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STABLE SELF-SIMILAR BLOW-UP DYNAMICS FOR SLIGHTLY

L2-SUPERCRITICAL GENERALIZED KDV EQUATIONS

YANG LAN

Abstract. In this paper we consider the slightly L2-supercritical gKdV equa-

tions ∂tu + (uxx + u|u|p−1)x = 0, with the nonlinearity 5 < p < 5 + ε and

0 < ε � 1 . We will prove the existence and stability of a blow-up dynam-
ics with self-similar blow-up rate in the energy space H1 and give a specific

description of the formation of the singularity near the blow-up time.

1. introduction

We consider the following gKdV equations:
{
∂tu+ (uxx + u|u|p−1)x = 0, (t, x) ∈ [0, T )× R,
u(0, x) = u0(x) ∈ H1(R),

(1.1)

with 1 ≤ p < +∞.
This kind of problem appears in Physics, for example in the study of waves on

shallow water (see [11]). These equations, with nonlinear Schrödinger equations,
are considered as universal models for Hamiltonian systems in finite dimension.

From the result of C. E. Kenig, G. Ponce and L. Vega [8], (1.1) is locally well-
posed in H1 and thus for all u0 ∈ H1, there exists a maximal lifetime 0 < T ≤ +∞
and a unique solution u(t, x) ∈ C([0, T ), H1(R)) to (1.1). Moreover, we have: either
T = +∞ or T < +∞ and limt→T ‖ux(t)‖L2 = +∞.

A solution with a finite maximal lifetime 0 < T < +∞, is called a blow-up
solution. Numerical simulation for example [1] suggests that finite time blow up
may occur for some initial data. But unlike the focusing nonlinear Schrödinger
equations, there are no pseudo-conformal invariance or Virial’s identity, which allow
us to have explicit blow-up solution. Until recently, the blow dynamics of (1.1) for
p = 5 has been established by Martel, Merle and Raphaël in a series of papers
[19, 13, 14, 15, 16, 17, 18]. They prove the existence and stability of blow-up
solutions to (1.1), and also give a specific description of the asymptotic behavior
near the blow-up time.

In this paper, we will focus on the case with nonlinearity 5 < p < 5 + δ, where
δ > 0 is small enough. Numerical simulation in [4] suggests that there exists
self-similar blow-up solution to (1.1) in this case. Here a self-similar solution is a
solution of the following form:

u(t, x) ∼ 1

(T − t) 2
3(p−1)

P

(
x

(T − t) 1
3

)
.

We mention here that, in [15] Martel and Merle proved that there is no self-similar
blow-up solution for the case p = 5 under certain conditions.
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The main issue of this paper is to construct a blow up solution to (1.1) in the
energy space H1 with self-similar blow-up rate. Moreover, we will prove its stability
and give a explicit description of the formation of singularity near the blow up time.

2. Preliminary

In this section we will recall some special feature of the Cauchy problem (1.1).

2.1. Conservation laws. The equation has two important conservation laws, i.e.
mass and energy:

E(u(t)) :=
1

2

∫
|ux(t)|2 − 1

p+ 1

∫
|u(t)|p+1 = E0, (2.1)

M(u(t)) :=

∫
|u(t)|2 = M0. (2.2)

2.2. Scaling invariance. Let u(t) be a solution to (1.1), and λ > 0 be a positive
constant. Then

uλ(t) =
1

λ
2
p−1

u

(
t

λ3
,
x

λ

)

is still a solution to (1.1). Moreover, for all λ > 0, we have

‖u(0)‖Ḣσc = ‖uλ(0)‖Ḣσc , σc =
1

2
− 2

p− 1
.

Here

Ḣs =

{
f ∈ S ′

∣∣∣∣‖f‖2Ḣs :=

∫
|ξ|2s|û(ξ)|2 dξ < +∞

}
.

If σc < 0 (or equivalently p < 5), the problem (1.1) is called (mass) subcritical. If
σ=0 or p = 5, the problem (1.1) is called (mass) critical. While if σc > 0 or p > 5,
(1.1) is called (mass) supercritical.

From the energy and mass conservation laws, in the subcritical case, H1 solutions
are always global in time and uniformly bounded in H1.

2.3. Soliton solution. The problem (1.1) has a special class of solution, i.e. called
the soliton solutions. They are given by

u(t, x) =
1

λ
2
p−1

0

Qp
(
x− λ−20 t

λ0

)
,

where λ0 > 0, x0 ∈ R and Qp is the unique radial nonnegative solution with
exponential decay to the following elliptic equation:

Q′′p −Qp +Qp|Qp|p−1 = 0.

From [24], Qp is the minimizer to the following functional:

J(f) := min
f∈H1(R),f 6=0

‖fx‖
p−1
2

L2 ‖f‖
p+3
2

L2

‖f‖p+1
Lp+1

.

A standard variation argument shows that for p = 5, if ‖u0‖L2 < ‖Q5‖L2 , then

E(u0) =
1

2

∫
|∂xu0|2 −

1

6

∫
|u0|6 &

∫
|∂xu0|2.
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Hence, the corresponding solution with initial data u0 is global in time. In conclu-
sion, for the critical problem, i.e. p = 5, a necessary condition for blow-up is that
‖u0‖L2 ≥ ‖Q5‖L2 .

3. Main result

Now we can state the result of [12].

Theorem 3.1 (Existence and stability of a self-similar blow-up dynamics). There
exists a p∗ > 5 such that for all p ∈ (5, p∗), there exist constants δ(p) > 0 and
b∗(p) > 0 with

lim
p→5

δ(p) = 0 (3.1)

0 < c0(p− 5) ≤ b∗(p) ≤ C0(p− 5) (3.2)

and a nonempty open subset Op in H1 such that the following holds. If u0 ∈ Op,
then the corresponding solution to (1.1) blows up in finite time 0 < T < +∞, with
the following dynamics : there exist geometrical parameters (λ(t), x(t)) ∈ R∗+ × R
and an error term ε(t) such that:

u(t, x) =
1

λ(t)
2
p−1

[
Qp + ε(t)

](x− x(t)

λ(t)

)
(3.3)

with

‖εy(t)‖L2 ≤ δ(p). (3.4)

Moreover, we have:

(1) The blow-up point converges at the blow-up time:

x(t)→ x(T ) as t→ T, (3.5)

(2) The blow-up speed is self-similar:

∀t ∈ [0, T ), (1− δ(p)) 3
√

3b∗(p) ≤ λ(t)
3
√
T − t ≤ (1 + δ(p)) 3

√
3b∗(p). (3.6)

(3) The following convergence holds:

∀q ∈ [2,
2

1− 2σc
), u(t)→ u∗ in Lq as t→ T . (3.7)

(4) The asymptotic profile u∗ displays the following singular behavior:

(
1− δ(p)

) ∫
Q2
p ≤

1

R2σc

∫

|x−x(T )|<R
|u∗|2 ≤

(
1 + δ(p)

) ∫
Q2
p. (3.8)

for R small enough. In particular, we have for all q ≥ 2
1−2σc :

u∗ /∈ Lq.
Remark 3.2. Here the meaning of qc = 2

1−2σc is given by the following Sobolev
embedding:

Ḣσc ↪→ Lqc .

That is, the asymptotic profile u∗ is not in the critical space Ḣσc , and the conver-
gence (3.7) only exists in subcritical Lebesgue spaces.

Remark 3.3. It is easy to see from the L2 conservation law that
∫
|u∗|2 =

∫
|u0|2.
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Remark 3.4. The conclusion here is almost the same to the Schrödinger case in [20].
But we need a totally differential strategy, due to the different structure of these
two equations. Indeed, our strategy here is very close to the one in [16] for critical
gKdV. But there are some significant difference between critical and supercritical
equations. For example the singular dynamics for gKdV is located around some
point x(t), which always goes to infinity in finite time for critical equation1. While
in this supercritical case, x(t) converges to some finite point.

Remark 3.5. Theorem 3.1 is the first construction of blow-up solutions to the super-
critical gKdV equations with initial data in H1. This is a stable blow-up dynamics
instead of a single blow-up solution. So it is not like the self-similar solution con-
structed by H. Koch in [9], though the construction in this paper relies deeply on
H. Koch’s work.

4. Outline of the proof

We will give in this subsection a brief insight of the proof of Theorem 3.1. We
will first use the self-similar solution constructed by H. Koch in [9], to derive a
finite dimensional dynamics, which fully describe the blow-up regime. Since we are
considering the slightly supercritical case, it is helpful to view this equation as a
perturbation of the critical equation in some sense. So we can use some critical
techniques in our analysis, though they may have a totally different meaning in the
supercritical case.

4.1. Derivation of the law. We are looking for a solution to (1.1) of the form:

u(t, x) =
1

λ(t)
2
p−1

Vb(t)

(
x− x(t)

λ(t)

)
, (4.1)

and introduce the rescaled time:

ds

dt
=

1

λ(t)3
.

Then u is a solution to (1.1) if and only if Vb solves the following equation:

bs
∂Vb
∂b
− λs

λ
ΛVb + (V ′′b − Vb + Vb|Vb|p−1)′ =

(
xs
λ
− 1

)
V ′b , (4.2)

where Λ is the scaling operator:

Λf =
2

p− 1
f + yf ′.

Similar to the Schrödinger case, the self-similar blow-up regime of (1.1) corresponds
to the following finite dimensional dynamics:

ds

dt
=

1

λ3
,

xs
λ

= 1,
λs
λ

= −b, bs = 0, (4.3)

which, after integrating, leads to finite time blow-up for b(0) > 0 with:

λ(t) = c(u0) 3
√
T − t.

1This somehow explains why there is no self-similar blow-up solution for critical gKdV with

initial data near soliton.
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4.2. Self-similar profile. From the previous analysis, we can see it is very crucial
to find a solution to the following ODE:

bΛv + (v′′ − v + v|v|p−1)′ = 0. (4.4)

This has been done by H. Koch in [9]. Indeed, Koch obtained a even larger range
of solutions.

Proposition 4.1 (H. Koch [9]). There exist p∗ > 5, b∗ > 0, such that there exist
two smooth maps: γ(b, p) : [0, b∗)× [5, p∗)→ R, v(b, p, y) : [0, b∗)× [5, p∗)×R→ R,
such that the following holds:

(1) The self-similar equation:

b
(
(1 + γ(b, p))v + xv′

)
+ (v′′ − v + v|v|p−1)′ = 0, (4.5)

(v(b, p, ·),Q′p(·)) = 0, v(b, p, y) > 0. (4.6)

(2) For all p ∈ [5, p∗), there exists a unique b = b(p) ∈ [0, b∗) such that:

γ(b(p), p) = −1 +
2

p− 1
, b(5) = 0, (4.7)

Moreover,

db(p)

dp

∣∣∣∣
p=5

=
‖Q‖2L2

‖Q‖2L1

> 0, (4.8)

∂γ

∂b

∣∣∣∣
b=b(p)

= − ‖Qp‖
2
L1

8‖Qp‖2L2

+O(|p− 5|) < 0, (4.9)

1

2

∫
|vy(b(p), p, y))|2dy − 1

p+ 1

∫
|v(b(p), p, y)|p+1dy = 0. (4.10)

(3) v(b, p, ·) ∈ Ḣ1 ∩ Lp+1, v(b, p, ·) /∈ L2 if b > 0 and v(0, p, y) = Qp(y).
Moreover,

|∂ky∂nb v| .





e−
1
3b (1 + b−2/3|1− by|)−1−γ−k if y > b−1,

e−
y
10 if b−1 ≥ y > 0,∣∣∂ky∂nb
(
b(1− by)−1−γ

)∣∣+ ey if y ≤ 0.

(4.11)

Remark 4.2. From Proposition 4.1, for every p ∈ (5, 5 + δ), δ > 0 small enough, we
can find a unique b > 0 and a function v solving (4.4). This gives us an explicit
blow-up “solution” to (1.1) with self-similar blow-up rate. But this solution never

belongs to the critical Sobolev space Ḣσc and hence H1, due to a slowly decaying
tail. Thus, we can’t expect any stability result of this solution. Since a stability
result usually requires us to work in a Cauchy space. In this situation, a natural
Cauchy space is the energy space H1.

But fortunately, we have the asymptotic behavior of the solution v, i.e. (4.11).
Therefore we can choose a suitable approximation of v. More precisely, we fix a
p ∈ (5, 5 + δ), and let

bc = b(p) ∼ p− 5 > 0, Qb(y) = χ(bcy)v(v, p, y), (4.12)

where χ is a smooth function such that χ(y) = 1, if |y| < 1, χ(y) = 0, if |y| > 2.
Then from (4.11), we know that Qb has exponential decay on the right. Moreover,
Qb belongs to H1, whose H1 norm is of size one. We will see that this approximated
self-similar profile Qb will lead to a stable self-similar blow-up dynamics.

Exp. no XIX— Stable self-similar blow-up dynamics for slightly L2-supercritical generalized KDV equations

XIX–5



4.3. Decomposition of the flow. Let us assume that the initial data is near
the approximated profile Qbc up to scaling and translation, which is exactly the
definition of the nonempty open subset Op introduced in Theorem 3.1. Then from
a standard implicit function argument introduced in [19, 15, 13, 16], we can find
geometrical parameters (λ(t), x(t), b(t)) and error term ε(t), such that the following
decomposition holds:

u(t, x) =
1

λ
2
p−1 (t)

[
Qb(t) + ε(t)

](x− x(t)

λ(t)

)
. (4.13)

Moreover, the error term satisfies the following orthogonality condition:

(ε(t),Qp) = (ε(t),ΛQp) = (ε(t), yΛQp) = 0. (4.14)

4.4. Modulation equation. Differentiating the orthogonality condition (4.14),
we will obtain the modulation equations of the parameters, which are:

λs
λ

+ b = O(b
5
2
c + ‖ε‖H1

loc
),

xs
λ
− 1 = O(b

5
2
c + ‖ε‖H1

loc
),

bs + cp(b− bc)bc = O(b3c + bc‖ε‖H1
loc

),

s =

∫ t

0

1

λ3(τ)
dτ.

(4.15)

Our main task here is to control ‖ε‖H1
loc

, which is done by a bootstrap argument.

If such a control exists, we will see that (4.15) is just a small perturbation of the
system (4.3), and has the same asymptotic behavior.

4.5. Local H1 control of the error term. The key techniques in this paper are
the monotonicity of energy and a dispersive control of ‖ε‖H1

loc
.

In supercritical case any critical or subcritical norm of the error term ε cannot
be controlled, for example ‖ε‖L2 or even

∫
y>0

ε2. This contrasts with the critical

case, where ‖ε‖L2 is small. And for the same reason, we can no longer use the
L1 control of ε on the right as Martel, Merle and Raphaël did in the critical case
in [16].

Fortunately, we can still control ‖εy‖L2 . Moreover, from the energy conservation
law and a localization argument, we can obtain an even better control of the L2

norm of εy on the half-line [κB,+∞):
∫

y>κB

ε2y . b
55
7
c . (4.16)

where κ > 0 is a small universal constant, and

B = b
− 1

20
c .

Together with Gagliardo-Nirenberg inequality, we can give a good control of the
localized L2 norm of ε on the right:

∫

κB<y<2B2

ε2 . b2c . (4.17)
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Next, we construct a nonlinear functional:

F =

∫ [
ε2yψB + ε2ζB −

2

p+ 1

(
|ε+Qb|p+1 −Qp+1

b − (p+ 1)εQpb
)
ψB

]
,

for well chosen functions (ψB , ζB), which are exponentially decaying to the left and
bounded on the right. A similar functional was introduced in [16] for the critical
equations, but they have a totally different meaning. Here the key point in this
case is that we cannot control

∫
y>0

ε2. We need to find a different way to control ε

on the right. However, if we choose ζ such that it is compactly supported on the
right, i.e. supp ζ ⊂ (−∞, 2B2], then for y > 0, only localized L2 norm of ε appears
in F , which can be controlled by (4.17).

The most significant technique here is the Lyapounov monotonicity :

dF
ds

+
1

B
‖ε‖2H1

loc
. b

7
2
c . (4.18)

Moreover, the leading order term of F is:

F ∼
∫ [

ε2yψB + ε2ζB − pε2Qp−1b ψB

]
,

which is coercive up to 3 bad direction. More precisely, we have:

Lemma 4.3. There exists a κ0 > 0 such that for all f ∈ H1, there holds:∫
f2x + f2 − pQp−1p f2 ≥ κ0‖f‖2H1 − 1

κ0

[
(f,Qp)2 + (f,ΛQp)2 + (f, yΛQp)2

]
.

From Lemma 4.3, orthogonality condition (4.14) and a standard localization
argument, we have:

F & ‖ε‖2H1
loc
.

The above analysis shows that ‖ε‖H1
loc

(or equivalently F) is almost decreasing

with respect to s ∈ [0,+∞). Hence we have:

‖ε‖2H1
loc

. b3+8ν
c , (4.19)

where ν > 0 is a small universal constant.

4.6. Nonlinear estimate of the error term. In the previous section, there are
nonlinear term like ∫

|ε|p+1ζB

evolved in the functional F . So in order to estimate F , a global Lp0 control of the
error term ε is necessary, where p0 < p + 1. But from scaling, we cannot expect
any global control of subcritical norm of ε, i.e. we must choose p0 >

p−1
2 . Indeed,

p0 =
5

2

is enough for our analysis. To control ‖ε‖Lp0 , it is better to work in the original
variable, i.e. we only need to find a control of

ũ(t, x) =
1

λ
2
p−1 (t)

ε

(
t,
x− x(t)

λ(t)

)
.

We write down the equation of ũ:

∂tũ+ ∂xxxũ =
(
f(ũ)

)
x

+QS ,
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where f(ũ) is a nonlinear term of ũ, QS is the singular part of the original solution.
It is easy to see that QS can be controlled by the modulation equations (4.15).
Now, using the inhomogeneous Strichartz estimates introduced by Foschi in [5], we
have:

‖ũ‖Lp0 ≤
b

13
28
c

λ
2
p−1−p0(t)

,

or equivalently

‖ε‖Lp0 ≤ b
13
28
c , (4.20)

which is exactly the required nonlinear estimate.

4.7. End of the proof of Theorem 3.1. From the control of the error term,
we can see that the parameters (λ(t), x(t), b(t)) satisfies (4.3) up to some small
perturbation. So they will have the same asymptotic behavior, which leads to the
self-similar blow-up dynamics. This dynamics is also stable due to the openness of
the initial data set Op.
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