The main issue of this text is the study of qualitative properties for two canonical semilinear equations:
Its aim is threefold: introduce nonspecialists to the blow-up issue and dynamics near stationary states sometimes leading to their concentration, give an up to date bibliography on this subject for the two equations and on the existence and properties of stationary states and backward self-similar solutions, and a presentation of the author’s work on this issue with a sketch of proof for a recent result obtained in collaboration with F. Merle and P. Raphaël.
@article{SLSEDP_2015-2016____A20_0, author = {Charles Collot}, title = {On blow-up and dynamics near ground states for some semilinear equations}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:20}, pages = {1--12}, publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique}, year = {2015-2016}, doi = {10.5802/slsedp.87}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.87/} }
TY - JOUR AU - Charles Collot TI - On blow-up and dynamics near ground states for some semilinear equations JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:20 PY - 2015-2016 SP - 1 EP - 12 PB - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.87/ DO - 10.5802/slsedp.87 LA - en ID - SLSEDP_2015-2016____A20_0 ER -
%0 Journal Article %A Charles Collot %T On blow-up and dynamics near ground states for some semilinear equations %J Séminaire Laurent Schwartz — EDP et applications %Z talk:20 %D 2015-2016 %P 1-12 %I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.87/ %R 10.5802/slsedp.87 %G en %F SLSEDP_2015-2016____A20_0
Charles Collot. On blow-up and dynamics near ground states for some semilinear equations. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Talk no. 20, 12 p. doi : 10.5802/slsedp.87. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.87/
[1] Aubin, T. (1976). Problemes isopérimétriques et espaces de Sobolev. Journal of differential geometry, 11(4), 573-598.
[2] Budd, C.; Norbury, J., Semilinear elliptic equations and supercritical growth, J. Differential Equations 68 (1987), no. 2, 169–197.
[3] Budd, C.; Qi, Y-W., The existence of bounded solutions of a semilinear elliptic equations, J. Differential Equations 82 (1989) 207–218.
[4] Brezis, H., Cazenave, T. (1996). A nonlinear heat equation with singular initial data. Journal d’Analyse Mathématique, 68(1), 277-304.
[5] Collot, C. (2014). Type II blow up manifolds for the energy supercritical wave equation. | arXiv
[6] Collot, C. (2016) Non radial type II blow up for the energy supercritical semilinear heat equation, preprint.
[7] Collot, C., Merle, F., Raphael, P. (2016). Dynamics near the ground state for the energy critical nonlinear heat equation in large dimensions. | arXiv
[8] del Pino, M., Musso, M., Pacard, F., Pistoia, A. (2011). Large energy entire solutions for the Yamabe equation. Journal of Differential Equations, 251(9), 2568-2597.
[9] Ding, W. Y., Ni, W. M. (1985). On the elliptic equation and related topics. Duke mathematical journal, 52(2), 485-506.
[10] Ding, W. Y. (1986). On a conformally invariant elliptic equation on . Communications in Mathematical Physics, 107(2), 331-335.
[11] Duyckaerts, T.; Kenig, C.; Merle, F., Classification of radial solutions of the focusing, energy-critical wave equation, Camb. J. Math. 1 (2013), no. 1, 75–144.
[12] Duyckaerts, T., Jia, H., Kenig, C., Merle, F. (2016). Soliton resolution along a sequence of times for the focusing energy critical wave equation. | arXiv
[13] T. Duyckaerts, F. Merle, Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP 2007, Art. ID rpn002, 67 pp. (2008).
[14] Fermanian Kammerer, C., Merle, F., Zaag, H. (2000). Stability of the blow-up profile of non-linear heat equations from the dynamical system point of view. Mathematische Annalen, 317(2), 347-387.
[15] Filippas, S., Herrero, M. A., Velazquez, J. J. (2000, December). Fast blow-up mechanisms for sign-changing solutions of a semilinear parabolic equation with critical nonlinearity. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences (Vol. 456, No. 2004, pp. 2957-2982). The Royal Society.
[16] Gidas, B., Spruck, J. (1981). Global and local behavior of positive solutions of nonlinear elliptic equations. Communications on Pure and Applied Mathematics, 34(4), 525-598.
[17] Giga, Y., Kohn, R. V. (1985). Asymptotically self-similar blow-up of semilinear heat equations. Communications on Pure and Applied Mathematics, 38(3), 297-319.
[18] Ginibre, J., Velo, G. (1985). The global Cauchy problem for the non linear Klein-Gordon equation. Mathematische Zeitschrift, 189(4), 487-505.
[19] Gui, C., Ni, W. M., Wang, X., On the stability and instability of positive steady states of a semilinear heat equation in . Comm. Pure Appl. Math., 45(9):1153-1181, 1992.
[20] Gustafson, S.; Nakanishi, K; Tsai, T.P, Asymptotic stability, concentration and oscillations in harmonic map heat flow, Landau Lifschitz and Schrödinger maps on , Comm. Math. Phys. 300 (2010), 205-242.
[21] Herrero, M.A.; Velázquez, J.J.L., Explosion de solutions des équations paraboliques semilinéaires supercritiques, C. R. Acad. Sci. Paris 319, 141–145 (1994).
[22] M. Hillairet, P. Raphaël. Smooth type II blow-up solutions to the four-dimensional energy-critical wave equation. Anal. PDE, 5(4):777-829, 2012.
[23] Jendrej, J. (2015). Construction of type II blow-up solutions for the energy-critical wave equation in dimension 5. | arXiv
[24] Jendrej, J. (2016). Construction of two-bubble solutions for energy-critical wave equations. | arXiv
[25] Joseph, D. D., Lundgren, T. S. (1973). Quasilinear Dirichlet problems driven by positive sources. Archive for Rational Mechanics and Analysis, 49(4), 241-269.
[26] J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the critical focusing semilinear wave equation, Duke Math. J. 147 (2009), 1–53.
[27] Lepin L.A., Self-similar solutions of a semilinear heat equation, Mat. Model. 2 (1990) 63–7.
[28] Y. Li. Asymptotic Behavior of Positive Solutions of Equation in . J. Differential Equations, 95(2):304-330, 1992.
[29] H. Lindblad, C.D. Sogge. On existence and scattering with minimal regularity for semilinear wave equations. J. Funct. Anal. 130(2):357-426, 1995.
[30] Matano, H. (2007). Blow-up in nonlinear heat equations with supercritical power nonlinearity. Contemporary Mathematics, 446, 385-412.
[31] Matano, H.; Merle, F., On nonexistence of type II blowup for a supercritical nonlinear heat equation, Comm. Pure Appl. Math. 57 (2004), no. 11, 1494–1541.
[32] Matano, H.; Merle, F., Classification of type I and type II behaviors for a supercritical nonlinear heat equation, J. Funct. Anal. 256 (2009), no. 4, 992–1064.
[33] Martel, Y.; Merle, F.; Raphaël, P., Blow up for the critical generalized Korteweg–de Vries equation. I: Dynamics near the soliton, Acta Math. 212 (2014), no. 1, 59–140.
[34] Martel, Y.; Merle, F.; Raphaël, P., Blow up for the critical gKdV equation. II: minimal mass dynamics, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 8, 1855–1925.
[35] Martel, Y.; Merle, F.; Nakanishi, K.; Raphaël, P., Codimension one threshold manifold for the critical gKdV equation, . | arXiv
[36] Merle, F., On uniqueness and continuation properties after blow up time of self similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass. Communications on pure and applied mathematics (1992), 45(2), 203–254.
[37] Merle, F., Zaag, H. (1998). Optimal estimates for blowup rate and behavior for nonlinear heat equations. Communications on pure and applied mathematics, 51(2), 139-196.
[38] Mizoguchi, N., Type-II blowup for a semilinear heat equation, Adv. Differential Equations 9 (2004), no. 11-12, 1279–1316.
[39] N. Mizoguchi. Rate of type II blowup for a semilinear heat equation. Math. Ann., 339(4):839-877, 2007.
[40] Mizoguchi, N., Nonexistence of backward self-similar blowup solutions to a supercritical semilinear heat equation, J. Funct. Anal. 257 (2009), no. 9, 2911–2937.
[41] Mizoguchi, N. (2011). Nonexistence of type II blowup solution for a semilinear heat equation. Journal of Differential Equations, 250(1), 26-32.
[42] Mizoguchi, N. (2011). Blow-up rate of type II and the braid group theory. Transactions of the American Mathematical Society, 363(3), 1419-1443.
[43] Nakanishi, K., Schlag, W. (2011). Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation. Journal of Differential Equations, 250(5), 2299-2333.
[44] Quittner, P., Souplet, P. (2007). Superlinear parabolic problems: blow-up, global existence and steady states. Springer Science Business Media.
[45] Raphaël, P., Rodnianski, I., Stable blow up dynamics for critical corotational wave maps and the equivariant Yang Mills problems, Publ. Math. Inst. Hautes Etudes Sci. 115 (2012), 1–122.
[46] Schlag, W. (2005). Spectral theory and nonlinear PDE: a survey, preprint.
[47] Schweyer, R.,Type II blow-up for the four dimensional energy critical semi linear heat equation, J. Funct. Anal. 263 (2012), no. 12, 3922–3983.
[48] Talenti, G. (1976). Best constant in Sobolev inequality. Annali di Matematica pura ed Applicata, 110(1), 353-372.
[49] Tao, T., Low regularity semi-linear wave equations 1. Comm. Partial Differential Equations, 24(3-4):599-629, 1999.
[50] Tao, T. (2006). Nonlinear dispersive equations: local and global analysis (Vol. 106). American Mathematical Soc.
[51] Troy, W., The existence of bounded solutions of a semilinear heat equation, SIAM J. Math. Anal. 18 (1987), 332–336.
[52] Weissler, F. B. (1980). Local existence and nonexistence for semilinear parabolic equations in . Indiana Univ. Math. J, 29(1), 79-102.
Cited by Sources: