The goal of this review is to explain some recent results [5] regarding generalizations of the Stein-Tomas (and Strichartz) inequalities to the context of trace ideals (Schatten spaces).
@article{SLSEDP_2015-2016____A15_0, author = {Rupert L. Frank and Julien Sabin}, title = {The {Stein-Tomas} inequality in trace ideals}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:15}, pages = {1--12}, publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique}, year = {2015-2016}, doi = {10.5802/slsedp.92}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.92/} }
TY - JOUR AU - Rupert L. Frank AU - Julien Sabin TI - The Stein-Tomas inequality in trace ideals JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:15 PY - 2015-2016 SP - 1 EP - 12 PB - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.92/ DO - 10.5802/slsedp.92 LA - en ID - SLSEDP_2015-2016____A15_0 ER -
%0 Journal Article %A Rupert L. Frank %A Julien Sabin %T The Stein-Tomas inequality in trace ideals %J Séminaire Laurent Schwartz — EDP et applications %Z talk:15 %D 2015-2016 %P 1-12 %I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.92/ %R 10.5802/slsedp.92 %G en %F SLSEDP_2015-2016____A15_0
Rupert L. Frank; Julien Sabin. The Stein-Tomas inequality in trace ideals. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Talk no. 15, 12 p. doi : 10.5802/slsedp.92. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.92/
[1] P. Bégout and A. Vargas, Mass concentration phenomena for the -critical nonlinear Schrödinger equation, Trans. Amer. Math. Soc., 359 (2007), pp. 5257–5282.
[2] J. Bourgain, Refinements of Strichartz’ inequality and applications to D-NLS with critical nonlinearity, Internat. Math. Res. Notices, (1998), pp. 253–283.
[3] R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equations. II. The -critical case, Trans. Amer. Math. Soc., 359 (2007), pp. 33–62 (electronic).
[4] R. L. Frank, M. Lewin, E. H. Lieb, and R. Seiringer, Strichartz inequality for orthonormal functions, J. Eur. Math. Soc. (JEMS), 16 (2014), pp. 1507–1526.
[5] R. L. Frank and J. Sabin, Restriction theorems for orthonormal functions, Strichartz inequalities, and uniform Sobolev estimates, Amer. J. Math, (2016). To appear.
[6] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), pp. 955–980.
[7] M. Lewin and J. Sabin, The Hartree equation for infinitely many particles. II. Dispersion and scattering in 2D, Analysis and PDE, 7 (2014), pp. 1339–1363.
[8] M. Lewin and J. Sabin, The Hartree equation for infinitely many particles I. Well-posedness theory, Comm. Math. Phys., 334 (2015), pp. 117–170.
[9] C. Muscalu and W. Schlag, Classical and multilinear harmonic analysis. Vol. I, vol. 137 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2013.
[10] J. Sabin, The Hartree equation for infinite quantum systems, Journées Équations aux dérivées partielles, (2014), pp. 1–18.
[11] B. Simon, Trace ideals and their applications, vol. 35 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1979.
[12] E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc., 83 (1956), pp. 482–492.
[13] E. M. Stein, Oscillatory integrals in Fourier analysis, in Beijing lectures in harmonic analysis (Beijing, 1984), vol. 112 of Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, 1986, pp. 307–355.
[14] R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., 44 (1977), pp. 705–714.
[15] T. Tao, A sharp bilinear restriction estimate for paraboloids, Geom. Funct. Anal., 13 (2003), pp. 1359–1384.
[16] T. Tao, Some recent progress on the restriction conjecture, in Fourier analysis and convexity, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA, 2004, pp. 217–243.
[17] P. A. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math. Soc., 81 (1975), pp. 477–478.
Cited by Sources: