Cet exposé présente des résultats récents [17, 18] quant à deux modèles effectifs pour les effets de la polarisation du vide quantique sur les champs électromagnétiques. Le modèle de Pauli-Villars les décrit de manière rigoureuse lorsque les champs électromagnétiques sont supposés classiques. À partir de ce premier modèle est ensuite proposée une dérivation du modèle classique d’Euler-Heisenberg [22] dans un régime de champs purement magnétiques et faiblement variables.
@article{SLSEDP_2015-2016____A14_0, author = {Philippe Gravejat and Christian Hainzl and Mathieu Lewin and \'Eric S\'er\'e}, title = {Deux mod\`eles effectifs pour les champs \'electromagn\'etiques dans le vide de {Dirac}}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:14}, pages = {1--20}, publisher = {Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique}, year = {2015-2016}, doi = {10.5802/slsedp.89}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.89/} }
TY - JOUR AU - Philippe Gravejat AU - Christian Hainzl AU - Mathieu Lewin AU - Éric Séré TI - Deux modèles effectifs pour les champs électromagnétiques dans le vide de Dirac JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:14 PY - 2015-2016 SP - 1 EP - 20 PB - Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.89/ DO - 10.5802/slsedp.89 LA - fr ID - SLSEDP_2015-2016____A14_0 ER -
%0 Journal Article %A Philippe Gravejat %A Christian Hainzl %A Mathieu Lewin %A Éric Séré %T Deux modèles effectifs pour les champs électromagnétiques dans le vide de Dirac %J Séminaire Laurent Schwartz — EDP et applications %Z talk:14 %D 2015-2016 %P 1-20 %I Institut des hautes des scientifiques & Centre de mathtiques Laurent Schwartz, ole polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.89/ %R 10.5802/slsedp.89 %G fr %F SLSEDP_2015-2016____A14_0
Philippe Gravejat; Christian Hainzl; Mathieu Lewin; Éric Séré. Deux modèles effectifs pour les champs électromagnétiques dans le vide de Dirac. Séminaire Laurent Schwartz — EDP et applications (2015-2016), Talk no. 14, 20 p. doi : 10.5802/slsedp.89. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.89/
[1] V. Bach, E.-H. Lieb, and J.-P. Solovej, Generalized Hartree-Fock theory and the Hubbard model, J. Stat. Phys. 76 (1994), no. 1-2, 3–89.
[2] M.G. Baring and A.K. Harding, Photon splitting and pair creation in highly magnetized pulsars, Astrophys. J. 547 (2001), no. 2, 929–948.
[3] D.L. Burke, R.C. Field, G. Horton-Smith, J.E. Spencer, D. Walz, S.C. Berridge, W.M. Bugg, K. Shmakov, A.W. Weidemann, C. Bula, K.T. McDonald, E.J. Prebys, C. Bamber, S.J. Boege, T. Koffas, T. Kotseroglou, A.C. Melissinos, D.D. Meyerhofer, D.A. Reis, and W. Ragg, Positron production in multiphoton light-by-light scattering, Phys. Rev. Lett. 79 (1997), no. 9, 1626–1629.
[4] H.B.G. Casimir, On the attraction between two perfectly conducting plates, Proc. Kon. Nederland. Akad. Wetensch. 51 (1948), no. 7, 793–795.
[5] H.B.G. Casimir and D. Polder, The influence of retardation on the London-van der Waals forces, Phys. Rev. 73 (1948), no. 4, 360–372.
[6] S. Chadha and P. Olesen, On Borel singularities in quantum field theory, Phys. Lett. B 72 (1977), no. 1, 87–90.
[7] V.I. Denisov and S.I. Svertilov, Vacuum nonlinear electrodynamics curvature of photon trajectories in pulsars and magnetars, A&A 399 (2003), no. 3, L39–L42.
[8] P.A.M. Dirac, Theory of electrons and positrons, Nobel lecture delivered at Stockholm (1933).
[9] P.A.M. Dirac, Discussion of the infinite distribution of electrons in the theory of the positron, Proc. Camb. Philos. Soc. 30 (1934), 150–163.
[10] P.A.M. Dirac, Théorie du positron, Structure et propriétés des noyaux atomiques, 7th Solvay Report, no. XXV, Gauthier-Villars, Paris, 1934, pp. 203–212.
[11] L. Erdös and J.-P. Solovej, Semiclassical eigenvalue estimates for the Pauli operator with strong non-homogeneous magnetic fields. II. Leading order asymptotic estimates, Commun. Math. Phys. 188 (1997), no. 3, 599–656.
[12] L. Erdös and J.-P. Solovej, Semiclassical eigenvalue estimates for the Pauli operator with strong nonhomogeneous magnetic fields. I. Nonasymptotic Lieb-Thirring-type estimate, Duke Math. J. 96 (1999), no. 1, 127–173.
[13] L. Erdös and J.-P. Solovej, Uniform Lieb-Thirring inequality for the three-dimensional Pauli operator with a strong non-homogeneous magnetic field, Ann. Henri Poincaré 5 (2004), no. 4, 671–741.
[14] H. Euler, Über die Streuung von Licht an Licht nach der Diracschen Theorie, Ann. d. Phys. 418 (1936), no. 5, 398–448.
[15] H. Euler and B. Kockel, Über die Streuung von Licht an Licht nach der Diracschen Theorie, Naturwissenschaften 23 (1935), no. 15, 246–247.
[16] P. Gravejat, C. Hainzl, M. Lewin, and É. Séré, Two Hartree-Fock models for the vacuum polarization, Journées Équations aux Dérivées Partielles, 2012, Exp. No. IV, 31 p.
[17] P. Gravejat, C. Hainzl, M. Lewin, and É. Séré, Construction of the Pauli-Villars-regulated Dirac vacuum in electromagnetic fields, Arch. Ration. Mech. Anal. 208 (2013), no. 2, 603–665.
[18] P. Gravejat, M. Lewin, and É. Séré, Derivation of the magnetic Euler-Heisenberg energy, Preprint (2016), . | HAL
[19] W. Greiner and J. Reinhardt, Quantum electrodynamics, Fourth ed., Springer-Verlag, Berlin, 2009, Translated from the German.
[20] G.’t Hooft and M. Veltman, Regularization and renormalization of gauge fields, Nuclear Physics B 44 (1972), no. 1, 189–213.
[21] C. Hainzl, M. Lewin, and J.-P. Solovej, The mean-field approximation in quantum electrodynamics. The no-photon case, Commun. Pure Appl. Math. 60 (2007), no. 4, 546–596.
[22] W. Heisenberg and H. Euler, Folgerungen aus der Diracschen Theorie des Positrons, Zts. f. Phys. 98 (1936), no. 11-12, 714–732.
[23] W.E. Lamb and R.C. Retherford, Fine structure of the hydrogen atom by a microwave method, Phys. Rev. 72 (1947), no. 3, 241–243.
[24] L.D. Landau and E.M. Lifshitz, Quantum mechanics. Non-relativistic theory, Third ed., Course of Theoretical Physics, vol. 3, Pergamon Press, Oxford, 1977, Translated from the Russian by J.B. Sykes and J.S. Bell.
[25] M. Lewin, A nonlinear variational problem in relativistic quantum mechanics, Proceedings of the sixth European congress of mathematics, Krakow (Poland), July 2012 (R. Latala, A. Rucinski, P. Strzelecki, J. Swiatkowski, D. Wrzosek, and P. Zakrzewski, eds.), European Mathematical Society, 2014, pp. 45–59.
[26] E.H. Lieb, J.-P. Solovej, and J. Yngvason, Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions, Commun. Math. Phys. 161 (1994), no. 1, 77–124.
[27] M. Marklund, G. Brodin, and L. Stenflo, Electromagnetic wave collapse in a radiation background, Phys. Rev. Let. 91 (2003), no. 16, 163601.
[28] G.A. Mourou, T. Tajima, and S.V. Bulanov, Optics in the relativistic regime, Rev. Mod. Phys. 78 (2006), no. 2, 309–371.
[29] W. Pauli and F. Villars, On the invariant regularization in relativistic quantum theory, Rev. Modern Phys. 21 (1949), 434–444.
[30] M.E. Peskin and D.V. Schroeder, An introduction to quantum field theory, Frontiers in Physics, vol. 94, Westview Press, New-York, 1995.
[31] J. Schwinger, On gauge invariance and vacuum polarization, Phys. Rev. 82 (1951), no. 5, 664–679.
[32] E.A. Uehling, Polarization effects in the positron theory, Phys. Rev. 48 (1935), no. 1, 55–63.
[33] V.F. Weisskopf, Über die Elektrodynamik des Vakuums auf Grund der Quantentheorie des Elektrons, Dan. Mat. Fys. Medd. 16 (1936), no. 6, 1–39.
[34] K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974), no. 8, 2445–2459.
[35] J. Yngvason, Thomas-Fermi theory for matter in a magnetic field as a limit of quantum mechanics, Lett. Math. Phys. 22 (1991), no. 2, 107–117.
Cited by Sources: