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THE STEIN-TOMAS INEQUALITY IN TRACE IDEALS

RUPERT L. FRANK AND JULIEN SABIN

Abstract. The goal of this review is to explain some recent results [5] re-
garding generalizations of the Stein-Tomas (and Strichartz) inequalities to the
context of trace ideals (Schatten spaces).

Introduction

As a general question in Fourier analysis, one wants to understand how the
Fourier transform acts on Lp(RN ), when 1 < p < 2 and N > 1. When f ∈ Lp(RN )

with p = 1, the Fourier transform f̂ of f is a continuous function on RN vanishing
at infinity, while for p = 2 it is merely a square integrable function by Plancherel’s

theorem. In particular, f̂ may be restricted to any given set of zero Lebesgue
measure in RN in a meaningful way when p = 1, a property which is not true

anymore when p = 2 since f̂ is only defined almost everywhere in this case. It is
then a natural question to ask whether this property persists for some p > 1, even

though the Hausdorff-Young inequality implies that f̂ belongs to Lp′
(RN ) in this

case (where we denoted by p′ the dual exponent of p) and thus is also only defined
almost everywhere a priori. A positive answer to this question for some particular
zero measure sets has been provided by the striking result of Stein and Tomas.

Theorem 1 (Stein [13]-Tomas [17]). Let N > 2 and S ⊂ RN a compact hyper-

surface with non-vanishing Gauss curvature. Then, for any 1 6 p 6 2(N+1)
N+3 , there

exists C > 0 such that for all f ∈ (L1 ∩ Lp)(RN ), we have
∣∣∣
∣∣∣f̂ |S

∣∣∣
∣∣∣
L2(S)

6 C ||f ||Lp(RN ) , (1)

where S is endowed with its Lebesgue measure. Furthermore, the exponent p =
2(N+1)
N+3 is optimal in the sense that (1) is wrong for any p > 2(N+1)

N+3 .

Theorem 1 provides a distinction between the Fourier transform on Lp(RN )
whether p < 2(N +1)/(N +3) or not: when it is the case, the range of the Fourier

transform on Lp(RN ) lies within a subset of Lp′
(RN ) in which functions may be

restricted to any curved compact surface in a L2-sense, a property which does not
hold when p > 2(N + 1)/(N + 3).

The restriction property of Stein and Tomas is stated in terms of square inte-
grable functions on the surface S. One may wonder whether the exponent p can
be increased if we replace L2(S) by the larger space L1(S) in (1): this is the con-
tent of the famous Stein-Tomas conjecture, which states that one can go up to
p < 2N/(N + 1) in this case. For now, this conjecture has been proved only in
N = 2 when S is a circle and is open in any other case. One may consult the
review article [16] for informations on this conjecture.
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It is perhaps surprising that curvature plays a role in these properties of the
Fourier transform. However, examining the case when S is flat, for instance if S is
a portion of the hyperplane {ξ ∈ RN , ξ1 = 0}, one sees that the function

f(x) =
1

1 + |x1|
χ(x2, . . . , xN ), x ∈ RN ,

with χ ∈ C∞
0 (RN ), belongs to Lp(RN ) for any p > 1 (but not p = 1), and has a

Fourier transform which blows up on S; hence the property (1) can only hold for
p = 1 for a flat surface (to rigorously negate the inequality (1), one has to consider
a well-chosen sequence of integrable functions approaching this f in Lp(RN )).

The reason why curvature indeed implies restriction properties of the Fourier
transform for p > 1 is actually related to the choice of the space L2(S) in (1).

Denoting by RS the restriction operator RSf = f̂|S, Theorem 1 says that the lin-

ear operator RS extends to a bounded operator from Lp(RN ) to L2(S). Using
the Hilbert space structure of L2(S), this is equivalent to the boundedness of

the translation-invariant operator TS := (RS)
∗RS from Lp(RN ) to Lp′

(RN ). A

straightforward computation shows that TSf = f ∗ d̂σ, where

d̂σ(x) :=

∫

S

eix·ξdσ(ξ), ∀x ∈ RN ,

dσ denoting the Lebesgue measure on S. The curvature of S then implies by a
stationary phase argument the decay estimate

|d̂σ(x)| 6 C(1 + |x|)−N−1
2 ,

which, using the Hardy-Littlewood-Sobolev inequality, leads to Theorem 1 in the
range 1 6 p 6 4N/(3N + 1), a range strictly smaller than the optimal one 1 6 p 6
2(N+1)/(N+3). It is due to the fact that d̂σ is not any function which decays like
|x|−(N−1)/2 at infinity: one also has to use that its Fourier transform is supported
on a (N − 1)-dimensional object. Using this additional information, Tomas [17]
was able to obtain Theorem 1 in the subcritical range 1 6 p < 2(N + 1)/(N + 3),
and then Stein [13] obtained the full optimal range using a complex interpolation
argument (which we will explain in more details in Section 2).

An interesting extension to the Stein-Tomas theorem has been provided by
Strichartz [14], who considered non-compact surfaces which are levels of quadratic
forms. Of particular interest is the case of the paraboloid

S = {(ω, ξ) ∈ R× Rd, ω = −|ξ|2},
for some d > 1, for which Strichartz obtained Theorem 1 when p = 2(d+2)/(d+4),
corresponding to the endpoint exponent p = 2(N + 1)/(N + 3) since N = d+ 1 in
this case. Here, the measure on S used to define the space L2(S) is obtained by
pushing forward the Lebesgue measure on Rd by the map ξ ∈ Rd 7→ (ξ,−|ξ|2) ∈ S,
inducing an isometry between L2(S) and L2(Rd). Using this identification, one
may verify that for any g ∈ L2(Rd) ≃ L2(S) we have

(RS)
∗g(t, x) = (eit∆x ĝ)(x), ∀(t, x) ∈ R× Rd,

where ∆x denotes the Laplace operator on Rd. Hence, Strichartz’ result implies
the estimate

∣∣∣∣eit∆xg
∣∣∣∣
L

2+4/d
t,x (R×Rd)

6 C ||g||L2(Rd) , ∀g ∈ L2(Rd),
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which is of particular interest since the function g(t, x) = eit∆xg is the unique
solution to the Schrödinger equation i∂tg = −∆xg with initial data g(0, ·) = g.
One may thus see Strichartz’ estimate as a way to measure the smallness of g(t, ·)
for large times t, which is an expression of the dispersive properties of the linear
Schrödinger equation. Strichartz obtained similar estimates when S is a cone or a
two-sheeted hyperboloid, which correspond respectively to the wave equation and
to the Klein-Gordon equation. These kinds of dispersive estimates are a decisive
ingredient in the study of non-linear versions of these equations.

We have seen that Stein-Tomas-type theorems amount to proving the bound-
edness of the linear operator TS from Lp(RN ) to Lp′

(RN ). By the Hölder
inequality, this is equivalent to the boundedness of the operator W1TSW2

on L2(RN ) (where W1 and W2 are seen as multiplication operators), for any
W1,W2 ∈ L2p/(2−p)(RN ) together with the bound

||W1TSW2||L2→L2 6 C ||W1||L2p/(2−p)(RN ) ||W2||L2p/(2−p)(RN ) , (2)

for some C > 0 independent ofW1 and W2. In [5], we obtain additional information
on the operator W1TSW2 beyond its mere boundedness: we show that it is actually
a compact operator and that it belongs to certain Schatten classes (recall that
a compact operator A on a Hilbert space H belongs to the Schatten class Sα

(with α > 1) if the sequence of its singular values (µn(A)) belongs to the sequence
space ℓα, which induces a norm on Sα by ||A||Sα = ||(µn(A))||ℓα [11]). In other
words, we upgrade the Stein-Tomas inequality (2) to the stronger

||W1TSW2||Sα 6 C ||W1||L2p/(2−p)(RN ) ||W2||L2p/(2−p)(RN ) , (3)

with the optimal (that is, smallest; the Stein-Tomas inequality (2) corresponding to
α = ∞) exponent α = α(p) > 1 (see Theorem 2 for a precise statement). Since TS

is a translation-invariant operator, it may be written as TS = f(−i∇) for some
distribution f (which here is supported on S). Inequalities of the form (3) are
known to hold when f belongs to some Lebesgue space, by results of Kato-Seiler-
Simon [11, Ch. 4]. As a consequence, the inequality (3) may be seen as an extension
of these results in the case when the distribution f is singular (here, supported on
a curved hypersurface).

A motivation to look at trace ideals extensions to Stein-Tomas-type inequalities
comes from a dual version of the inequality (3): it is equivalent (see [5, Lem. 3]) to
the fact that for all orthonormal system (fj) in L2(S) and for any corresponding
coefficients (νj) ⊂ C, one has the estimate

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

j

νj |(RS)
∗fj |2

∣∣∣∣∣∣

∣∣∣∣∣∣
Lp′/2(RN )

6 C


∑

j

|νj |α
′




1/α′

, (4)

for some C > 0 independent of (fj) and (νj). Here, the exponent α′ is dual to the
exponent α appearing in (3). Inequality (4) reduces to (the dual version of) (1)
when the orthonormal system is reduced to one function (and the corresponding
coefficient ν = 1). On the other hand, one cannot deduce (4) “directly” from (1)
using the triangle inequality: this only leads to

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

j

νj |(RS)
∗fj |2

∣∣∣∣∣∣

∣∣∣∣∣∣
Lp′/2(RN )

6
∑

j

|νj | ||(RS)
∗fj||2Lp′(RN ) 6 C

∑

j

|νj |,
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which is weaker than (4) if α′ > 1. Hence, (4) may be seen as a generalization of (1)
for systems of orthonormal functions, with an optimal dependence on the number of
such functions (that is, with an optimal exponent α). Quantities appearing on the
left-side of (4) arise in the context of many-body quantum mechanics: for instance,
when S is a paraboloid, the quantity

M∑

j=1

|eit∆uj|2

represents the spatial density at time t of a system of M fermions evolving freely
in Rd, the jth fermion having uj as wavefunction at time t = 0 (the M -body
wavefunction is then a Slater determinant u1 ∧ · · · ∧ uM ) . It is thus interesting to
control such quantities for large times, but also for large M . We refer to [8, 7, 10]
for applications of such inequalities in the study of nonlinear PDEs modelling the
evolution of infinite quantum systems. The inequality (4) can also be stated in a
more concise way using the language of one-body density matrices [5].

In the rest of the review, we state more precisely our results, prove some im-
provements which are new, and give an application to a refined Strichartz estimate.
Finally, we provide elements of proof.

1. Results

1.1. Summary. We have generalized the results of Stein-Tomas in the compact
case and the results of Strichartz in the non-compact case. Let us start with the
compact case [5, Thm. 2].

Theorem 2. Let N > 2 and S ⊂ RN a compact hypersurface with non-vanishing

Gauss curvature. Then, for any 1 6 p 6 2(N+1)
N+3 there exists C > 0 such that for

all W1,W2 ∈ L2p/(2−p)(RN ), we have

||W1TSW2||
S

(N−1)p
2N−(N+1)p

6 C ||W1||L2p/(2−p)(RN ) ||W1||L2p/(2−p)(RN ) . (5)

The Schatten exponent α = (N − 1)p/(2N− (N +1)p) in (5) is optimal (that is,
the smallest possible). It is proved in [5, Thm. 6], where the density matrix
formalism is exploited: the orthonormal system used to test the inequality (4)
corresponds to the (unknown) eigenfunctions of an operator γh on L2(S) with
integral kernel

γh(ξ, ξ
′) =

∫

RN

1(|x|2 6 h−2)eix·(ξ−ξ′) dx, (ξ, ξ′) ∈ S × S,

for a small ’semi-classical’ parameter h > 0. As another remark, we notice that
the Schatten exponent in (5) is equal to 1 (that is, the smallest possible) when
p = 1. While this looks like the stronger result, it is actually straightforward to
prove it since in this case W1,W2 ∈ L2(RN ) and hence the operator W1(RS)

∗ has
an integral kernel

W1(RS)
∗(x, ξ) = W1(x)e

ix·ξ, (x, ξ) ∈ RN × S

which is square integrable on RN × S, meaning that it is Hilbert-Schmidt (i.e. S2)
from L2(S) to L2(RN ) and hence W1TSW2 = W1(RS)

∗RSW2 is trace-class
(i.e. S1).

When S is a level set of a quadratic form (and hence can be non-compact), which
is the case considered by Strichartz [14], we also obtain similar estimates [5, Thm. 3].
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For the sake of clarity, let us state it only in the case of a paraboloid, even if the
result holds for different kind of quadratic surfaces. In the special case of the
paraboloid, we can actually go a little bit further than what is proved in Strichartz’
article by using mixed (space-time) Lebesgue norms [5, Thm. 9].

Theorem 3. Let d > 1 and S be the paraboloid

S := {(ω, ξ) ∈ R× Rd, ω = −|ξ|2}.
Then, for all exponents p, q > 1 satisfying the relations

2

p
+

d

q
= 1, q > d+ 1,

there exists C > 0 such that for all W1,W2 ∈ Lp
tL

q
x(R× Rd) we have

||W1TSW2||Sq(L2(Rd+1)) 6 C ||W1||Lp
tL

q
x(R×Rd) ||W2||Lp

tL
q
x(R×Rd) . (6)

Contrary to the compact case of Theorem 2, we see here that the Schatten
class S1 is never attained, which is due to the fact that S has infinite volume in
this case and hence the argument presented to obtain the trace-class property does
not hold anymore. Theorem 3 was proved for the first time by Frank, Lewin, Lieb,
and Seiringer in [4] in the restricted range q > d+2. They also proved the following
statement concerning the optimality of the Schatten exponent.

Proposition 1. Let d, p, q > 1 exponents satisfying 2/p + d/q = 1. Assume that
there exists α > 1 and C > 0 such that for all Schwartz function W one has

∣∣∣∣WTSW
∣∣∣∣
Sα(L2(Rd+1))

6 C ||W ||2Lp
tL

q
x(R×Rd) . (7)

Then, the Schatten exponent α must satisfy

α > q, α > d+ 1.

This last statement implies that the range q > d + 1 is optimal for (7) to hold
with α = q, as in Theorem 3. However, one can go below q = d+ 1 if the Schatten
exponent is not α = q. Indeed, in the numerology of Theorem 3, the Keel-Tao
endpoint [6] corresponds to q = d (for d > 3) and q = 2 (if d = 1), while for d = 2
the endpoint Strichartz estimate is known to fail. As a consequence, one cannot
hope to have (7) for q < d (while the relation 2/p+ d/q = 1 is imposed by scaling).
The result of Keel-Tao implies that we have the estimate (7) for q = d (d > 3)
or q = 2 (d = 1) with the Schatten exponent α = ∞ (which corresponds to the
operator norm). Interpolating between the cases q = d (α = ∞) and q > d + 1
(α = q), we obtain the estimate (7) in the range d 6 q 6 d+1 with α = q/(q−d)+ε
for all ε > 0. The results are depicted in Figure 1, where the purple region denotes
the set of exponents for which we know that (6) holds. Away from the union of the
purple and dashed regions, the estimate (7) fails due to Proposition 1. Hence, the
question remains whether (7) holds in the dashed region. We discuss these (new)
results in the next section.

1.2. New results. In this section, we prove the following two new results:

Lemma 2. Let d > 3 and S the paraboloid in Rd+1. Then, for any non-zero
W ∈ Ld

x(Rd), the bounded operator WTSW is not compact in L2(Rd+1).

Proposition 3. If the inequality (7) holds, then α > q/(q − d).
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1
d+1

1
d+1

1
d

1
q

1
α

1
α = 1

q

0

Figure 1. Range of Strichartz inequality (d > 3). Purple: valid.
Dashed region: unknown by previous works.

1
d+1

1
d+1

1
d

1
q

1
α

1
α = 1

q 1
α = 1− d

q

Figure 2. Range of optimal Strichartz inequality (purple).
Dashed line: conjectured to hold.

Remark 4. Lemma 2 means that α = ∞ is optimal in the estimate (7) at the
Keel-Tao endpoint q = d. Indeed, notice that when q = d, the exponent p in
the statement of Theorem 3 is equal to p = ∞. Hence, in Lemma 2 the function
W = W (x) ∈ Ld

x(Rd) is identified to the (constant in time) function W = W (t, x) =
W (x) ∈ L∞

t Ld
x(R×Rd). In other words, this means that one cannot do better than

the triangle inequality at the Keel-Tao endpoint.

Remark 5. Proposition 3 means that the inequality (7) actually fails in the dashed
region of Figure 1.

According to Proposition 3, the only place where the validity of (7) is not known
is the dashed line represented on Figure 2. It would follow from proving an endpoint
estimate at q = d + 1. At this point, it is conjectured that (7) holds in the weak
Schatten space Sd+1

w rather than in Sd+1 (for which the estimate does not hold).
However, this weak Schatten estimate is completely open.

We now turn to the proofs of Lemma 2 and Proposition 3.
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1
d+1

1
d+1

1
d

1
q

1
α

1
α = 1

q

0

1
d+2

Figure 3. Open half-line (red) of invalidity of (7).

Proof of Lemma 2. Recall that WTSW = W (RS)
∗RSW = (RSW )∗RSW , so that

the compactness of WTSW is equivalent to the compactness of

FxRSW (RSW )∗Fx = FxRS |W |2(RS)
∗Fx =

∫

R
e−it∆x |W (t, x)|2eit∆x dt

on L2
x(Rd), where Fx denotes the Fourier transform on L2

x(Rd). Using that
W (t, x) = W (x) is independent of t, we find that for ϕn := ein∆xϕ, we have by a
simple change of variables

〈ϕn,

∫

R
e−it∆x |W (t, x)|2eit∆x dt ϕn〉 = 〈ϕ,

∫

R
e−i(t+n)∆x |W (x)|2ei(t+n)∆x dt ϕ〉

= 〈ϕ,
∫

R
e−it∆x |W (x)|2eit∆x dt ϕ〉

=

∫

R

∣∣∣∣Weit∆xϕ
∣∣∣∣2
L2

x
dt,

which is independent of n and certainly non-zero since W 6= 0, for an adequate
choice of ϕ ∈ L2

x(Rd). Since (ϕn) goes weakly to zero in L2
x(Rd) this shows that

the operator ∫

R
e−it∆x |W (t, x)|2eit∆x dt

is not compact on L2
x(Rd). �

When d = 1, we have q = 2 and hence p = 4. Hence, the previous argument
(which relied on the fact that p = ∞) fails in this case and in principle, we may
expect that one can do better than α = ∞ at the endpoint q = 2 when d = 1.

Proof of Proposition 3. We claim that if (7) holds for α = d + 2, then q >
d(d+ 2)/(d+ 1). Graphically, this means that we show that the inequality fails on
an open half-line as depicted on Figure 3.

Once this is shown, this implies the proposition. Indeed, imagine that the in-
equality holds for a point on the previously dashed region. Then, by complex
interpolation, it must hold on the convex hull of the purple region and this addi-
tional point. This convex hull clearly intersects the red open half-line, as depicted
in the Figure 4, which leads to a contradiction.
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1
d+1

1
d+1

1
d

1
q

1
α

1
α = 1

q

0

1
d+2

Figure 4. New region of validity if (7) holds at some other point.

We now prove the claim. Let v = v(t, x) a bounded, non-negative, non-zero
function on R× Rd such that

|t| > 1/2 =⇒ v(t, ·) ≡ 0,

and let N ∈ N, T > 1. The parameter T will be chosen later on to depend on N ,
and the parameter N will go to infinity. Taking W1 = W , W2 = W , V = |W |2,
and using a similar argument as in the proof of Lemma 2, the inequality (7) is
equivalent to

∣∣∣∣
∣∣∣∣
∫

R
eit∆V (t, x)e−it∆ dt

∣∣∣∣
∣∣∣∣
Sα(L2

x(Rd))

. ||V ||
L

p/2
t L

q/2
x (R×Rd)

.

We choose a trial V to be of the form

V (t, x) =

N∑

j=1

v(t− jT, x),

such that

||V ||
L

p/2
t L

q/2
x

≃ N2/p ||v||
L

p/2
t L

q/2
x

≃ N2/p.

Define

Aj :=

∫

R
eit∆v(t− jT, x)e−it∆ dt = eijT∆

(∫

R
eit∆v(t, x)e−it∆ dt

)
e−ijT∆

= eijT∆Ave
−ijT∆,

and recall that Av ∈ Sd+2 by the Strichartz inequality of [4]. Then,

Tr

(∫

R
eit∆V (t, x)e−it∆ dt

)d+2

= N TrAd+2
v +

∑

(j1,...,jd+2)/∈D

TrAj1 · · ·Ajd+2
,

where

D =
{
(j, . . . , j) ∈ {1, . . . , N}d+2, j = 1, . . . , N

}
.

For any (j1, . . . , jd+2) /∈ D, there exists 1 6 k 6 d + 1 such that jk 6= jk+1. By
cyclicity of the trace, we may assume that k = 1, so that

TrAj1 · · ·Ajd+2
= TrAve

i(j2−j1)T∆Ave
−ij2T∆Aj3 · · ·Ajd+2

eij1T∆.

Rupert L. Frank and Julien Sabin
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Since j2 6= j1, the operator Ave
i(j2−j1)T∆Av converges strongly to zero in S

d+2
2 as

T → +∞, by the following lemma.

Lemma 6. Let A,B ∈ Sd+2. Then, the operator Aeit∆B converges strongly to 0

in S
d+2
2 as t → +∞.

Proof. We may assume that B is finite-rank by density. Thus, assume B =∑
j λj |uj〉〈vj |. We have

∣∣∣∣Aeit∆|uj〉〈vj |
∣∣∣∣
Sp =

∣∣∣∣Aeit∆uj

∣∣∣∣ ||vj ||. Now eit∆uj goes

weakly to zero in L2 as t → +∞, and this implies that Aeit∆uj goes strongly to
zero in L2 since A is compact. �

Since the operator e−ij2T∆Aj3 · · ·Ajd+2
eij1T∆ is uniformly bounded in S

d+2
d , we

deduce that Ave
i(j2−j1)T∆Ave

−ij2T∆Aj3 · · ·Ajd+2
eij1T∆ converges strongly to 0 in

S1 as T → +∞. As a consequence, there exists T = T (v,N) > 1 large enough
such that ∣∣∣∣∣∣

∑

(j1,...,jd+2)/∈D

TrAj1 · · ·Ajd+2

∣∣∣∣∣∣
6 N

2
TrAd+2

v .

We thus find that N
1

d+2 . N
2
p and hence 2/p > 1/(d + 2), which proves the

proposition recalling that 2/p = 1− d/q. �

1.3. An application: a refined Strichartz estimate. As was hinted in the
introduction, the Schatten bounds (6) are equivalent to bounds on orthonormal
functions: if u1, . . . , uM is an orthormal system in L2

x(Rd) and if ν1, . . . , νM ∈ C
are corresponding coefficients, Theorem 3 implies that

∣∣∣∣∣∣

∣∣∣∣∣∣

M∑

j=1

νj |eit∆uj|2
∣∣∣∣∣∣

∣∣∣∣∣∣
L

(p/2)′
t L

(q/2)′
x

6 C




M∑

j=1

|νj |α
′




1/α′

. (8)

We refer to [5] for the explanation as to why Theorem 3 indeed implies such a
bound. One way to obtain a system of orthogonal functions from a single function
u ∈ L2

x(Rd) is to localize it on M disjoint sets in physical or Fourier variables.
For instance, denoting by (Pj)j∈Z the standard Littlewood-Paley multipliers for
functions on Rd (see for instance [9, Sec. 8.2]), and fixing a function u ∈ L2

x(Rd),
then the functions uj := Pju are (almost) orthogonal and we may try to apply (8)
to it. What is interesting in this approach is that the left side of (8) controls the

L
(q/2)′
x -norm of eit∆u by the Littewood-Paley theorem:

∣∣∣∣∣∣

∣∣∣∣∣∣
∑

j∈Z
|eit∆Pju|2

∣∣∣∣∣∣

∣∣∣∣∣∣
L

(q/2)′
x

&
∣∣∣∣eit∆u

∣∣∣∣2
L

2(q/2)′
x

.

Of course, the issue with this approach is that (i) the functions uj = Pju are
not normalized in L2

x, however their L2-norm can be put into the coefficients νj ;
(ii) the (uj) are not exactly orthogonal, but only uj, uj+1, uj−1 have an overlap.
Hence, one may still compute the Schatten norm of the operator

∑
j |Pju〉〈Pju|, see

[5, Cor. 9] for details. Putting all these remarks together, we arrive at the following
result [5, Cor. 9]:
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Proposition 7 (A refined Strichartz estimate). Let d > 1 and p, q > 2 satisfying

2

p
+

d

q
=

d

2
, 2 6 q < 2 +

4

d− 1
.

Then, there exists C > 0 such that for any u ∈ L2
x(Rd) we have

∣∣∣∣eit∆u
∣∣∣∣
Lp

tL
q
x(R×Rd)

6 C


∑

j∈Z
||Pju||4q/(q+2)

L2
x




(q+2)/(4q)

(9)

6 C′
(
sup
j∈Z

||Pju||L2
x

)(q−2)/(2q)

||u||(q+2)/(2q)
L2

x
. (10)

The fact that (10) follows from (9) is due to the fact that
∑

j ||Pju||2L2
x
is com-

parable to ||u||2L2
x
and that 4q/(q + 2) > 2. A similar estimate can be obtained in

the range 2 + 4/(d− 1) 6 q < 2 + 4/(d− 2) using the other set of Schatten bounds
mentioned in the previous section, obtained by interpolation with the Keel-Tao
endpoint estimate.

Refined Strichartz estimates of the type (10) appeared first in the work of Bour-
gain [2] when d = 2, and was later generalized by Bégout-Vargas [1] for d > 3
and Carles-Keraani [3] for d = 1. It is interesting to notice that in these works,
the refined estimates follow from deep bilinear estimates, for instance of Tao [15],
while Proposition 7 follows from a much simpler argument. On the other hand,
Proposition 7 does not imply the profile decomposition in the mass-critical case,
because it does not detect the translation in Fourier space (Galilean boosts).

2. Elements of proof

We now turn to the proof of Theorem 2 and Theorem 3, which are both based
on the same idea following the original works of Stein and Strichartz. They wanted
to prove that the operator

TS : Lp(RN ) → Lp′
(RN )

is bounded. Their idea is to introduce a bounded, analytic family of operators (Gz)
depending on a complex parameter z ∈ C living on a strip a 6 Re z 6 b for some
real numbers a < b, which satisfies Gc = TS for some c ∈ (a, b). The interest is to
regularize the singular distribution TS, which a Fourier multiplier by a distribution
supported on the surface S, by an analytic deformation. It is practically done in
the same fashion as one can regularize a delta-distribution δ0 at the origin on R, by
the family x 7→ xz

+ (one recovers δ0 at z = −1 where this distribution has a pole;
however one may compensate the pole at z = −1 by multiplying with a well-chosen,
x-independent function g(z) like g(z) = 1/Γ(z)).

With this suitable choice of regularization, Stein and Strichartz were able to
prove bounds of the type

{
||Ga+is||L1→L∞ 6 C,

||Gb+is||L2→L2 6 C,

for all s ∈ R, and for some C > 0 independent of s. Applying Stein’s interpola-
tion theorem [12] (which is a generalization of Hadamard’s three-line lemma), one

obtains the correct Lp → Lp′
bound for the operator Gc = TS.
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We now want to derive the bounds (5) using similar ideas. Using the same
analytic family (Gz), we derive the bounds

{
||W1Ga+isW2||S2 6 C ||W1||L2 ||W2||L2 ,

||W1Gb+isW2||L2→L2 6 C ||W1||L∞ ||W2||L∞ .

The second one follows trivially from the L2 → L2 bound on Gb+is derived by Stein
and Strichartz, while the first one is not much harder: indeed, one may express
the Hilbert-Schmidt norm in S2 in terms of the integral kernel of the considered
operator:

||W1Ga+isW2||2S2 =

∫

RN

∫

RN

|W1(x)|2|Ga+is(x, y)|2|W2(y)|2 dx dy,

which together with the remark that

||Ga+is||L1(RN )→L∞(RN ) = ||Ga+is(·, ·)||L∞(RN×RN ) ,

shows the desired inequality. One may then interpolate the S2 and the L2 → L2

bounds in the same fashion as in [11] to obtain Sα bounds on W1GcW2 = W1TSW2

which proves Theorem 2 and Theorem 3.
As is clear from our strategy of proof, we did not use at all that we were in

the context of restriction inequalities. Indeed, our strategy carries on as long as
some operator T is shown to be bounded from Lp to Lp′

by (complex) interpolating
L2 → L2 and L1 → L∞ bounds. Our proof shows that, automatically, one may
improve the Lp → Lp′

bound into a stronger Schatten bound. In [5], we provide
other examples where we can apply the same principle, and some applications of
these Schatten bounds.

Acknowledgments. Lemma 2 and Proposition 3 are new results and do not ap-
pear anywhere else. They have been obtained in collaboration with Mathieu Lewin.
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