In this note, we present the results of the article [LL14], and provide a complete proof in a simple case. We study the decay rate for the energy of solutions of a damped wave equation in a situation where the Geometric Control Condition is violated. We assume that the set of undamped trajectories is a flat torus of positive codimension and that the metric is locally flat around this set. We further assume that the damping function enjoys locally a prescribed homogeneity near the undamped set in traversal directions. We prove a sharp decay estimate at a polynomial rate that depends on the homogeneity of the damping function.
@article{SLSEDP_2014-2015____A21_0, author = {Matthieu L\'eautaud and Nicolas Lerner}, title = {Sharp polynomial energy decay for locally undamped waves}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:21}, pages = {1--13}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2014-2015}, doi = {10.5802/slsedp.79}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.79/} }
TY - JOUR AU - Matthieu Léautaud AU - Nicolas Lerner TI - Sharp polynomial energy decay for locally undamped waves JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:21 PY - 2014-2015 SP - 1 EP - 13 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.79/ DO - 10.5802/slsedp.79 LA - en ID - SLSEDP_2014-2015____A21_0 ER -
%0 Journal Article %A Matthieu Léautaud %A Nicolas Lerner %T Sharp polynomial energy decay for locally undamped waves %J Séminaire Laurent Schwartz — EDP et applications %Z talk:21 %D 2014-2015 %P 1-13 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.79/ %R 10.5802/slsedp.79 %G en %F SLSEDP_2014-2015____A21_0
Matthieu Léautaud; Nicolas Lerner. Sharp polynomial energy decay for locally undamped waves. Séminaire Laurent Schwartz — EDP et applications (2014-2015), Talk no. 21, 13 p. doi : 10.5802/slsedp.79. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.79/
[AL14] N. Anantharaman and M. Léautaud, Sharp polynomial decay rates for the damped wave equation on the torus, Anal. PDE 7 (2014), no. 1, 159–214. | MR | Zbl
[AM14] N. Anantharaman and F. Macià, Semiclassical measures for the Schrödinger equation on the torus, J. Eur. Math. Soc. (JEMS) 16 (2014), no. 6, 1253–1288. | MR | Zbl
[BD08] C. J. K. Batty and T. Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces, J. Evol. Equ. 8 (2008), no. 4, 765–780. | MR | Zbl
[BG97] N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 749–752. | MR | Zbl
[BH07] N. Burq and M. Hitrik, Energy decay for damped wave equations on partially rectangular domains, Math. Res. Lett. 14 (2007), no. 1, 35–47. | MR | Zbl
[BL89] J.-M. Bony and N. Lerner, Quantification asymptotique et microlocalisations d’ordre supérieur. I, Ann. Sci. École Norm. Sup. (4) 22 (1989), no. 3, 377–433. | Numdam | MR | Zbl
[BLR88] C. Bardos, G. Lebeau, and J. Rauch, Un exemple d’utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques, Rend. Sem. Mat. Univ. Politec. Torino (1988), no. Special Issue, 11–31 (1989), Nonlinear hyperbolic equations in applied sciences. | MR | Zbl
[Bon86] J.-M. Bony, Second microlocalization and propagation of singularities for semilinear hyperbolic equations, Hyperbolic equations and related topics (Katata/Kyoto, 1984), Academic Press, Boston, MA, 1986, pp. 11–49. | MR | Zbl
[BT10] A. Borichev and Y. Tomilov, Optimal polynomial decay of functions and operator semigroups, Math. Ann. 347 (2010), no. 2, 455–478. | MR | Zbl
[BZ15] N. Burq and C. Zuily, Laplace eigenfunctions and damped wave equation ii : product manifolds, preprint, (2015). | arXiv
[Dav99] E. B. Davies, Pseudo-spectra, the harmonic oscillator and complex resonances, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1982, 585–599. | MR | Zbl
[Del92] J.-M. Delort, F.B.I. transformation, Lecture Notes in Mathematics, vol. 1522, Springer-Verlag, Berlin, 1992, Second microlocalization and semilinear caustics. | MR | Zbl
[Den] W. Deng, Personal communication, 2012.
[FK00] C. Fermanian-Kammerer, Mesures semi-classiques 2-microlocales, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 7, 515–518. | MR | Zbl
[FK05] —, Analyse à deux échelles d’une suite bornée de sur une sous-variété du cotangent, C. R. Math. Acad. Sci. Paris 340 (2005), no. 4, 269–274. | MR
[FKG02] C. Fermanian-Kammerer and P. Gérard, Mesures semi-classiques et croisement de modes, Bull. Soc. Math. France 130 (2002), no. 1, 123–168. | Numdam | MR | Zbl
[KK80] M. Kashiwara and T. Kawai, Second-microlocalization and asymptotic expansions, Complex analysis, microlocal calculus and relativistic quantum theory (Proc. Internat. Colloq., Centre Phys., Les Houches, 1979), Lecture Notes in Phys., vol. 126, Springer, Berlin-New York, 1980, pp. 21–76. | MR | Zbl
[Leb85] G. Lebeau, Deuxième microlocalisation sur les sous-variétés isotropes, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 2, 145–216. | Numdam | MR | Zbl
[Leb92] —, Control for hyperbolic equations, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1992), École Polytech., Palaiseau, 1992, p. 24. | MR
[Leb96] —, Équation des ondes amorties, Algebraic and geometric methods in mathematical physics (Kaciveli, 1993), Math. Phys. Stud., vol. 19, Kluwer Acad. Publ., Dordrecht, 1996, pp. 73–109.
[Ler10] N. Lerner, Metrics on the phase space and non-selfadjoint pseudo-differential operators, Pseudo-Differential Operators. Theory and Applications, vol. 3, Birkhäuser Verlag, Basel, 2010. | MR | Zbl
[LL14] M. Léautaud and N. Lerner, Energy decay for a locally undamped wave equation, submitted, (2014). | arXiv
[LR05] Z. Liu and B. Rao, Characterization of polynomial decay rate for the solution of linear evolution equation, Z. Angew. Math. Phys. 56 (2005), no. 4, 630–644. | MR | Zbl
[Mac10] F. Macià, High-frequency propagation for the Schrödinger equation on the torus, J. Funct. Anal. 258 (2010), no. 3, 933–955. | MR | Zbl
[Mil97] L. Miller, Short waves through thin interfaces and 2-microlocal measures, Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1997), École Polytech., Palaiseau, 1997, pp. Exp. No. XII, 12. | MR | Zbl
[Phu07] K.-D. Phung, Polynomial decay rate for the dissipative wave equation, J. Differential Equations 240 (2007), no. 1, 92–124. | MR | Zbl
[PS06] Karel Pravda-Starov, A complete study of the pseudo-spectrum for the rotated harmonic oscillator, J. London Math. Soc. (2) 73 (2006), no. 3, 745–761. | MR | Zbl
[RT74] J. Rauch and M. Taylor, Exponential decay of solutions to hyperbolic equations in bounded domains, Indiana Univ. Math. J. 24 (1974), 79–86. | MR | Zbl
Cited by Sources: