This review is dedicated to recent results on the 2d parabolic-elliptic Patlak-Keller-Segel model, and on its variant in higher dimensions where the diffusion is of critical porous medium type. Both of these models have a critical mass such that the solutions exist globally in time if the mass is less than and above which there are solutions which blowup in finite time. The main tools, in particular the free energy, and the idea of the methods are set out. A number of open questions are also stated.
@article{SLSEDP_2011-2012____A8_0, author = {Adrien Blanchet}, title = {On the parabolic-elliptic {Patlak-Keller-Segel} system in dimension~2 and higher}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:8}, pages = {1--26}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2011-2012}, doi = {10.5802/slsedp.6}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.6/} }
TY - JOUR AU - Adrien Blanchet TI - On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:8 PY - 2011-2012 SP - 1 EP - 26 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.6/ DO - 10.5802/slsedp.6 LA - en ID - SLSEDP_2011-2012____A8_0 ER -
%0 Journal Article %A Adrien Blanchet %T On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher %J Séminaire Laurent Schwartz — EDP et applications %Z talk:8 %D 2011-2012 %P 1-26 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.6/ %R 10.5802/slsedp.6 %G en %F SLSEDP_2011-2012____A8_0
Adrien Blanchet. On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Talk no. 8, 26 p. doi : 10.5802/slsedp.6. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.6/
[1] L. A. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics, Birkhäuser, 2005. | MR | Zbl
[2] J. Bedrossian and Inwon Kim, Global Existence and Finite Time Blow-Up for Critical Patlak-Keller-Segel Models with Inhomogeneous, preprint, 2011.
[3] J. Bedrossian, N. Rodríguez and A. Bertozzi, Local and global well-posedness for aggregation equations and Patlak-Keller-Segel models with degenerate diffusion, Nonlinearity, 24 (2011), pp. 1683–1715. | MR | Zbl
[4] A. L. Bertozzi and M. C. Pugh, Long-wave instabilities and saturation in thin film equations, Comm. Pure Appl. Math., 51 (1998), pp. 625–661. | MR | Zbl
[5] Idem, Finite-time blow-up of solutions of some long-wave unstable thin film equations, Indiana Univ. Math. J., 49 (2000), pp. 1323–1366. | MR
[6] P. Biler, L. Corrias and J. Dolbeault, Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis, J. of Math. Biol., 63 (2011), pp. 1–32. | MR | Zbl
[7] P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The -problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods Appl. Sci., 29 (2006), pp. 1563–1583. | MR | Zbl
[8] A. Blanchet, V. Calvez and J.A. Carrillo, Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model, SIAM J. Numer. Anal., 46 (2008), pp. 691–721. | MR | Zbl
[9] A. Blanchet, E. Carlen and J.A. Carrillo, Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model, preprint, arXiv:1009.0134. | MR | Zbl
[10] A. Blanchet, J.A. Carrillo and Ph. Laurençot, Critical mass for a Patlak-Keller-Segel model with degenerate diffusion in higher dimensions, Calc. Var. Partial Differential Equations, 35 (2009), pp. 133–168. | MR | Zbl
[11] A. Blanchet, J. A. Carrillo and N. Masmoudi, Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in , Comm. Pure Appl. Math., 61 (2008), pp. 1449–1481. | MR | Zbl
[12] A. Blanchet, J. Dolbeault, M. Escobedo and J. Fernandez, Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model, Journal of Mathematical Analysis and Applications, 361 (2010), pp. 533–542.. | MR | Zbl
[13] A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations, 44 (2006), 32 pp. (electronic). | MR | Zbl
[14] A. Blanchet and Ph. Laurençot, Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion, To appear in Communications on Pure and Applied Analysis (2010). | MR
[15] M. P. Brenner, L. S. Levitov and E. O. Budrene, Physical Mechanisms for Chemotactic Pattern Formation by Bacteria, Biophysical Journal 74 (1998), pp. 1677–1693.
[16] M. Burger, Y. Dolak-Struss, and C. Schmeiser, Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions, Commun. Math. Sci., 6 (2008), pp. 1–28. | MR | Zbl
[17] V. Calvez and J. A. Carrillo, Volume effects in the Keller-Segel model: energy estimates preventing blow-up, J. Math. Pure et Appl., 86 (2006), pp. 155–175. | MR | Zbl
[18] V. Calvez and L. Corrias, The parabolic-parabolic Keller-Segel model in , Commun. Math. Sci. 6 (2008), pp. 417–447. | MR | Zbl
[19] V. Calvez, R. Hawkins, N. Meunier and R. Voituriez, Analysis of a non local model for spontaneous cell polarisation, arXiv:1105.4429.
[20] E. Carlen and A. Figalli, Stability for a GNS inequality and the Log-HLS inequality, with application to the critical mass Keller-Segel equation, preprint, arXiv:1107.5976.
[21] J. A. Carrillo, R. J. McCann and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Matemática Iberoamericana, 19 (2003), pp. 1–48. | MR | Zbl
[22] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. | MR | Zbl
[23] P.H. Chavanis, Generalized thermodynamics and Fokker-Planck equations. Applications to stellar dynamics, two-dimensional turbulence and Jupiter’s great red spot, Phys. Rev. E, 68 (2003), pp. 036108.
[24] P.H. Chavanis, Nonlinear mean field Fokker-Planck equations. Application to the chemotaxis of biological populations, Eur. Phys. J. B, 62 (2008), pp. 179–208 . | Zbl
[25] P.-H. Chavanis and R. Mannella, Self-gravitating Brownian particles in two dimensions: the case of particles, The Eur. Phys. J. B, 78 (2010), pp. 139–165. | MR
[26] P.-H. Chavanis and C. Sire, Anomalous diffusion and collapse of self-gravitating Langevin particles in dimensions, Phys. Rev. E, 69 (2004), 016116.
[27] S. Childress, Chemotactic collapse in two dimensions, Lecture Notes in Biomath, 55 (1984), pp. 217–237. | MR
[28] S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981), pp. 217–237. | MR | Zbl
[29] L. Corrias, B. Perthame, and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math., 72 (2004), pp. 1–29. | MR | Zbl
[30] M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., 81 (2002), pp. 847–875. | MR | Zbl
[31] J. Dolbeault and B. Perthame, Optimal critical mass in the two-dimensional Keller-Segel model in , C. R. Math. Acad. Sci. Paris, 339 (2004), pp. 611–616. | MR | Zbl
[32] J. Dolbeault and C. Schmeiser, The two-dimensional Keller-Segel model after blow-up, Disc. Cont. Dynam. Systems B, 25 (2009), pp. 109–121. | MR | Zbl
[33] M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller-Segel model, J. of Math. Biol., 35 (1996), pp. 177–194. | MR | Zbl
[34] M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math. Ann., 306 (1996), pp. 583–623. | MR | Zbl
[35] T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. in Appl. Math., 26 (2001), pp. 280–301. | MR | Zbl
[36] T. Hillen and K. Painter, A user’s guide to PDE models for chemotaxis, Journal of Mathematical Biology, 58 (2009), pp. 183–217. | MR | Zbl
[37] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), pp. 103–165. | MR | Zbl
[38] Idem, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II, Jahresber. Deutsch. Math.-Verein., 106 (2004), pp. 51–69. | MR | Zbl
[39] W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), pp. 819–824. | MR | Zbl
[40] N. Kavallaris and P. Souplet, Grow-up rate and refined asymptotics for a two-dimensional Patlak-Keller-Segel model in a disk, SIAM J. Math. Anal., 40 (2008/09), pp. 1852–1881. | MR
[41] E. F. Keller and L. A. Segel, Initiation of slide mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), pp. 399–415. | Zbl
[42] R. Kowalczyk, Preventing blow-up in a chemotaxis model, J. Math. Anal. Appl. 305 (2005), pp. 566–588. | MR | Zbl
[43] C. Lederman and P. A. Markowich, On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass, Comm. Partial Differential Equations, 28 (2003), pp. 301–332. | MR | Zbl
[44] S. Luckhaus, Y. Sugiyama, J. J. L. Velázquez, Measure valued solutions of the 2D Keller-Segel system, arXiv:1011.0282. | MR
[45] P. M. Lushnikov, Critical chemotactic collapse, Phys. Lett. A 374 (2010), pp. 1678–1685. | Zbl
[46] M. A. Herrero, E. Medina and J. J. L. Velázquez, Self-similar blow-up for a reaction-diffusion system, J. of Comp. and Appl. Math., 97 (1998), pp. 99–119. | MR | Zbl
[47] F. Merle and P. Raphaël, On universality of blow-up profile for critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), pp. 565–672. | MR | Zbl
[48] T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., 5 (1995), pp. 581–601. | MR | Zbl
[49] T. Nagai, T. Senba, T. Suzuki, Chemotactic collapse in a parabolic system of mathematical biology, Hiroshima Math. J, 30 (2000), pp. 463–497. | MR | Zbl
[50] V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology, Journal of Theoretical Biology, 42 (1973), pp. 63–105.
[51] C. S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys., 15 (1953), pp. 311–338. | MR
[52] B. Perthame, Transport equations in biology, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2007. | MR | Zbl
[53] D. Slepčev and M. C. Pugh, Selfsimilar blowup of unstable thin-film equations, Indiana Univ. Math. J., 54 (2005), pp. 1697–1738. | MR | Zbl
[54] C. Sire and P.-H. Chavanis, Gravitational collapse of a Brownian gas, Banach Center Publ. 66, 287, 2004. | MR | Zbl
[55] C. Sire and P.-H. Chavanis, Critical dynamics of self-gravitating Langevin particles and bacterial populations, Phys. Rev. E, 78 (2008), 061111. | MR
[56] Y. Sugiyama, Global existence in sub-critical cases and finite time blow-up in super-critical cases to degenerate Keller-Segel systems, Diff. Int. Eq., 19 (2006), pp. 841–876. | MR | Zbl
[57] Y. Sugiyama, Application of the best constant of the Sobolev inequality to degenerate Keller-Segel models, Adv. Diff. Eq., 12 (2007), pp. 121–144. | MR | Zbl
[58] Y. Sugiyama and J. J. L. Velázquez, Self-similar blow-up with a continuous range of values of the aggregated mass for a degenerate Keller-Segel system, Adv. Diff. Eq., 16 (2011), pp. 85–112. | MR | Zbl
[59] C. Sulem and P. L. Sulem, The nonlinear Schrödinger equation, Applied Mathematical Sciences 139, Springer-Verlag, New York, 1999. | MR | Zbl
[60] T. Suzuki and R. Takahashi, Degenerate parabolic equation with critical exponent derived from the kinetic theory, I, generation of the weak solution, Adv. Diff. Eq., 14 (2009), pp. 433–476. | MR | Zbl
[61] J. J. L. Velázquez, Stability of some mechanisms of chemotactic aggregation, SIAM J. Appl. Math., 62 (2002), pp. 1581–1633 (electronic). | MR | Zbl
[62] Idem, Point dynamics in a singular limit of the Keller-Segel model. I. Motion of the concentration regions, SIAM J. Appl. Math., 64 (2004), pp. 1198–1223 (electronic). | MR | Zbl
[63] Idem, Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions, SIAM J. Appl. Math., 64 (2004), pp. 1224–1248 (electronic). | MR | Zbl
[64] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics Vol. 58, Amer. Math. Soc, Providence, 2003. | MR | Zbl
[65] M. I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), pp. 567–576. | MR | Zbl
Cited by Sources: