This text deals with inverse spectral theory in a semiclassical setting. Given a quantum system, the haunting question is “What interesting quantities can be discovered on the spectrum that can help to characterize the system ?” The general framework will be semiclassical analysis, and the issue is to recover the classical dynamics from the quantum spectrum. The coupling of a spin and an oscillator is a fundamental example in physics where some nontrivial explicit calculations can be done.
@article{SLSEDP_2011-2012____A7_0, author = {San V\~{u} Ngọc}, title = {Spectral invariants for coupled spin-oscillators}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:7}, pages = {1--18}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2011-2012}, doi = {10.5802/slsedp.5}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.5/} }
TY - JOUR AU - San Vũ Ngọc TI - Spectral invariants for coupled spin-oscillators JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:7 PY - 2011-2012 SP - 1 EP - 18 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.5/ DO - 10.5802/slsedp.5 LA - en ID - SLSEDP_2011-2012____A7_0 ER -
%0 Journal Article %A San Vũ Ngọc %T Spectral invariants for coupled spin-oscillators %J Séminaire Laurent Schwartz — EDP et applications %Z talk:7 %D 2011-2012 %P 1-18 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.5/ %R 10.5802/slsedp.5 %G en %F SLSEDP_2011-2012____A7_0
San Vũ Ngọc. Spectral invariants for coupled spin-oscillators. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Talk no. 7, 18 p. doi : 10.5802/slsedp.5. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.5/
[1] O. Babelon, L. Cantini, and B. Douçot. A semi-classical study of the Jaynes-Cummings model. J. Stat. Mech. Theory Exp., (7):P07011, 45, 2009. | MR
[2] L. Charles. Quasimodes and Bohr-Sommerfeld conditions for the Toeplitz operators. Comm. Partial Differential Equations, 28(9-10), 2003. | MR | Zbl
[3] Y. Colin de Verdière. A semi-classical inverse problem II: reconstruction of the potential. oai:hal.archives-ouvertes.fr:hal-00251590_v1 .
[4] Y. Colin de Verdière. Spectre conjoint d’opérateurs pseudo-différentiels qui commutent II. Math. Z., 171:51–73, 1980. | MR | Zbl
[5] Y. Colin de Verdière and V. Guillemin. Semi-classical inverse problem I: Taylor expansions. preprint, hal-00250568.
[6] R. Cushman and J. J. Duistermaat. The quantum spherical pendulum. Bull. Amer. Math. Soc. (N.S.), 19:475–479, 1988. | MR | Zbl
[7] J.-P. Dufour, P. Molino, and A. Toulet. Classification des systèmes intégrables en dimension 2 et invariants des modèles de Fomenko. C. R. Acad. Sci. Paris Sér. I Math., 318:949–952, 1994. | MR | Zbl
[8] J. J. Duistermaat. On global action-angle variables. Comm. Pure Appl. Math., 33:687–706, 1980. | MR | Zbl
[9] H. R. Dullin. Semi-global symplectic invariants of the spherical pendulum. preprint arXiv:1108.4962. | MR
[10] C. Gordon, D. Webb, and S. Wolpert. Isospectral plane domains and surfaces via riemannian orbifolds. Invent. Math., 110(1):1–22, 1992. | MR | Zbl
[11] V. Guillemin, T. Paul, and A. Uribe. “Bottom of the well” semi-classical trace invariants. Math. Res. Lett., 14(4):711–719, 2007. | MR | Zbl
[12] H. Hezari. Inverse spectral problems for Schrödinger operators. Comm. Math. Phys., 288(3):1061–1088, 2009. | MR | Zbl
[13] A. Iantchenko, J. Sjöstrand, and M. Zworski. Birkhoff normal forms in semi-classical inverse problems. Math. Res. Lett., 9(2-3):337–362, 2002. | MR
[14] M. Kac. Can one hear the shape of a drum ? The American Math. Monthly, 73(4):1–23, 1966. | MR | Zbl
[15] J. Milnor. Eigenvalues of the laplace operator on certain manifolds. Proc. Natl. Acad. Sci. USA, 51:542, 1964. | MR | Zbl
[16] Ã. Pelayo and S. Vũ Ngọc. First steps in a symplectic and spectral theory of integrable systems. in preparation.
[17] Ã. Pelayo and S. Vũ Ngọc. Semitoric integrable systems on symplectic 4-manifolds. Invent. Math., 177(3):571–597, 2009. | MR | Zbl
[18] Ã. Pelayo and S. Vũ Ngọc. Hamiltonian dynamics and spectral theory for spin-oscillators. arXiv:1005.0439, to appear in Comm. Math. Phys., 2010. | MR
[19] Ã. Pelayo and S. Vũ Ngọc. Constructing integrable systems of semitoric type. Acta Math., 206:93–125, 2011. | MR | Zbl
[20] Ã. Pelayo and S. Vũ Ngọc. Symplectic theory of completely integrable hamiltonian systems. to appear in Bull. AMS., 2011. | MR | Zbl
[21] D.A. Sadovskií and B.I. Zhilinskií. Monodromy, diabolic points, and angular momentum coupling. Phys. Lett. A, 256(4):235–244, 1999. | MR | Zbl
[22] S. Vũ Ngọc. Symplectic inverse spectral theory for pseudodifferential operators. HAL preprint, June 2008. To appear in a Volume dedicated to Hans Duistermaat. | MR
[23] S. Vũ Ngọc. Quantum monodromy in integrable systems. Commun. Math. Phys., 203(2):465–479, 1999. | MR | Zbl
[24] S. Vũ Ngọc. Bohr-Sommerfeld conditions for integrable systems with critical manifolds of focus-focus type. Comm. Pure Appl. Math., 53(2):143–217, 2000. | MR | Zbl
[25] S. Vũ Ngọc. On semi-global invariants for focus-focus singularities. Topology, 42(2):365–380, 2003. | MR | Zbl
[26] S. Vũ Ngọc and Ch. Wacheux. Normal forms for hamiltonian systems near a focus-focus singularity. Preprint hal-00577205, 2010.
[27] S. Zelditch. The inverse spectral problem. In Surveys in differential geometry. Vol. IX, Surv. Differ. Geom., IX, pages 401–467. Int. Press, Somerville, MA, 2004. With an appendix by Johannes Sjöstrand and Maciej Zworski. | MR | Zbl
[28] S. Zelditch. Inverse spectral problem for analytic domains. I: Balian-bloch trace formula. Commun. Math. Phys., 248(2):357–407, 2004. | MR | Zbl
[29] S. Zelditch. Inverse spectral problem for analytic domains. II. -symmetric domains. Ann. of Math. (2), 170(1):205–269, 2009. | MR | Zbl
Cited by Sources: