These notes present the main results of [22, 23, 24] concerning the mass critical (gKdV) equation for initial data in close to the soliton. These works revisit the blow up phenomenon close to the family of solitons in several directions: definition of the stable blow up and classification of all possible behaviors in a suitable functional setting, description of the minimal mass blow up in , construction of various exotic blow up rates in , including grow up in infinite time.
@article{SLSEDP_2011-2012____A37_0, author = {Yvan Martel and Frank Merle and Pierre Rapha\"el}, title = {Blow up and near soliton dynamics for the $L^2$ critical {gKdV} equation}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:37}, pages = {1--14}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2011-2012}, doi = {10.5802/slsedp.28}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.28/} }
TY - JOUR AU - Yvan Martel AU - Frank Merle AU - Pierre Raphaël TI - Blow up and near soliton dynamics for the $L^2$ critical gKdV equation JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:37 PY - 2011-2012 SP - 1 EP - 14 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.28/ DO - 10.5802/slsedp.28 LA - en ID - SLSEDP_2011-2012____A37_0 ER -
%0 Journal Article %A Yvan Martel %A Frank Merle %A Pierre Raphaël %T Blow up and near soliton dynamics for the $L^2$ critical gKdV equation %J Séminaire Laurent Schwartz — EDP et applications %Z talk:37 %D 2011-2012 %P 1-14 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.28/ %R 10.5802/slsedp.28 %G en %F SLSEDP_2011-2012____A37_0
Yvan Martel; Frank Merle; Pierre Raphaël. Blow up and near soliton dynamics for the $L^2$ critical gKdV equation. Séminaire Laurent Schwartz — EDP et applications (2011-2012), Talk no. 37, 14 p. doi : 10.5802/slsedp.28. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.28/
[1] Berestycki, H.; Cazenave, T., Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. (French. English summary) [Instability of stationary states in nonlinear Schrödinger and Klein-Gordon equations] C. R. Acad. Sci. Paris Sér. I Math. 293 (1981), no. 9, 489–492. | MR | Zbl
[2] J. Bourgain and W. Wang, Construction of blowup solutions for the nonlinear Schrödinger equation with critical nonlinearity. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 197–215 (1998). | Numdam | MR | Zbl
[3] Donninger, R.; Krieger, J., Nonscattering solutions and blowup at infinity for the critical wave equation, preprint, arXiv:1201.3258
[4] T. Duyckaerts, F. Merle, Dynamics of threshold solutions for energy-critical wave equation. Int. Math. Res. Pap. IMRP 2007, Art. ID rpn002, 67 pp. (2008). | MR | Zbl
[5] T. Duyckaerts and F. Merle, Dynamic of threshold solutions for energy-critical NLS, Geom. Funct. Anal. 18 (2009), 1787–1840. | MR | Zbl
[6] G. Fibich, F. Merle and P. Raphaël, Proof of a spectral property related to the singularity formation for the L2 critical nonlinear Schrödinger equation. Phys. D 220 (2006), 1–13. | MR | Zbl
[7] S. Gustafson, K. Nakanishi and T.-P. Tsai, Asymptotic stability, concentration and oscillations in harmonic map heat flow, Landau Lifschitz and Schrödinger maps on , Comm. Math. Phys. 300 (2010), 205-242. | MR | Zbl
[8] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies in applied mathematics, 93–128, Adv. Math. Suppl. Stud., 8, Academic Press, New York, 1983. | MR | Zbl
[9] C.E. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, nonlinear Schrödinger equation in the radial case. Invent. Math. 166 (2006) 645–675. | MR | Zbl
[10] C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, (1993) 527–620. | MR | Zbl
[11] C.E. Kenig, G. Ponce and L. Vega, On the concentration of blow up solutions for the generalized KdV equation critical in . Nonlinear wave equations (Providence, RI, 1998), 131–156, Contemp. Math., 263, Amer. Math. Soc., Providence, RI, 2000. | MR | Zbl
[12] R. Killip, S. Kwon, S. Shao, M. Visan, On the mass-critical generalized KdV equation. Discrete Contin. Dyn. Syst. 32 (2012), 191–221. | MR | Zbl
[13] J. Krieger, K. Nakanishi and W. Schlag, Global dynamics away from the ground state for the energy-critical nonlinear wave equation, arXiv:1010.3799.
[14] J. Krieger and W. Schlag, Non-generic blow-up solutions for the critical focusing NLS in 1-D, J. Eur. Math. Soc. (JEMS) 11 (2009), 1–125. | MR | Zbl
[15] J. Krieger, W. Schlag and D. Tataru, Renormalization and blow up for charge one equivariant critical wave maps. Invent. Math. 171 (2008), 543–615. | MR | Zbl
[16] J. Krieger, W. Schlag and D. Tataru, Slow blow-up solutions for the critical focusing semilinear wave equation, Duke Math. J. 147 (2009), 1–53. | MR | Zbl
[17] Y. Martel and F. Merle, A Liouville theorem for the critical generalized Korteweg–de Vries equation, J. Math. Pures Appl. 79 (2000), 339–425. | MR | Zbl
[18] Y. Martel and F. Merle, Instability of solitons for the critical generalized Korteweg-de Vries equation. Geom. Funct. Anal. 11 (2001), 74–123. | MR | Zbl
[19] Y. Martel and F. Merle, Stability of blow up profile and lower bounds for blow up rate for the critical generalized KdV equation, Ann. of Math. 155 (2002), 235–280. | MR | Zbl
[20] Y. Martel and F. Merle, Blow up in finite time and dynamics of blow up solutions for the -critical generalized KdV equation, J. Amer. Math. Soc. 15 (2002), 617–664. | MR | Zbl
[21] Y. Martel and F. Merle, Frank Nonexistence of blow-up solution with minimal -mass for the critical gKdV equation. Duke Math. J. 115 (2002), 385–408. | MR | Zbl
[22] Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation I: dynamics near the soliton. Preprint.
[23] Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation II: minimal mass solution. Preprint.
[24] Y. Martel, F. Merle and P. Raphaël, Blow up for the critical gKdV equation III: exotic blow up rates. Preprint.
[25] F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J. 69 (1993), 427–454. | MR | Zbl
[26] F. Merle, Existence of blow-up solutions in the energy space for the critical generalized KdV equation. J. Amer. Math. Soc. 14 (2001), 555–578. | MR | Zbl
[27] F. Merle and P. Raphaël, Sharp upper bound on the blow up rate for the critical nonlinear Schrödinger equation, Geom. Func. Anal. 13 (2003), 591–642. | MR | Zbl
[28] F. Merle and P. Raphaël, On universality of blow-up profile for critical nonlinear Schrödinger equation. Invent. Math. 156 (2004), 565–672. | MR | Zbl
[29] F. Merle and P. Raphaël, The blow up dynamics and upper bound on the blow up rate for the critical nonlinear Schrödinger equation, Ann. of Math. 161 (2005), 157–222. | MR | Zbl
[30] F. Merle and P. Raphaël, Profiles and quantization of the blow up mass for critical nonlinear Schrödinger equation, Commun. Math. Phys. 253 (2005), 675–704. | MR | Zbl
[31] F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the critical nonlinear Schrödinger equation. J. Amer. Math. Soc. 19 (2006), 37–90. | MR | Zbl
[32] F. Merle, P. Raphaël and J. Szeftel, The instability of Bourgain-Wang solutions for the critical NLS, to appear in Amer. Math. Jour., preprint arXiv:1010.5168.
[33] F. Merle, P. Raphaël and I. Rodnianski, Blow up dynamics for smooth data equivariant solutions to the energy critical Schrodinger map problem. preprint arXiv:1102.4308
[34] K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the focusing nonlinear Klein-Gordon equation, J. Differential Equations 250 (2011), 2299–2333. | MR | Zbl
[35] K. Nakanishi and W. Schlag, Global dynamics above the ground state energy for the cubic NLS equation in 3D, arXiv:1007.4025. | MR | Zbl
[36] P. Raphaël, Stability of the log-log bound for blow up solutions to the critical non linear Schrödinger equation. Math. Ann. 331 (2005), 577–609. | MR | Zbl
[37] P. Raphaël, Stability and blow up for the nonlinear Schrodinger equation, Lecture notes for the Clay summer school on evolution equations, ETH, Zurich (2008), http://www.math.univ-toulouse.fr/ raphael/Teaching.html
[38] P. Raphaël and I. Rodnianski, Stable blow up dynamics for the critical co-rotational Wave Maps and equivariant Yang-Mills problems. To appear in Publications scientifiques de l’IHES. arXiv:0911.0692 | MR
[39] P. Raphaël and R. Schweyer, Stable blow up dynamics for the 1-corotational harmonic heat flow, to appear in Comm. Pure App. Math.
[40] P. Raphaël and J. Szeftel, Existence and uniqueness of minimal blow up solutions to an inhomogeneous mass critical NLS. To appear in J. Amer. Math. Soc. 23 (2011). Preprint arXiv:1001.1627 | MR | Zbl
[41] M. J. Landman, G. C. Papanicolaou, C. Sulem and P.-L. Sulem, Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. Phys. Rev. A (3) 38 (1988), 3837–3843. | MR
[42] G. Perelman, On the formation of singularities in solutions of the critical nonlinear Schrödinger equation, Ann. Henri Poincaré 2 (2001), 605–673. | MR | Zbl
[43] I. Rodnianski, J. Sterbenz, On the formation of singularities in the critical -model, Ann. of Math. (2) 172 (2010), 187–242. | MR | Zbl
[44] S. Shao, The linear profile decomposition for the Airy equation and the existence of maximizers for the Airy Strichartz inequality. Anal. PDE 2 (2009), 83–117. | MR | Zbl
[45] M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1983), 567–576. | MR | Zbl
Cited by Sources: