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BLOW UP AND NEAR SOLITON DYNAMICS
FOR THE L2 CRITICAL GKDV EQUATION

YVAN MARTEL, FRANK MERLE, AND PIERRE RAPHAËL

Abstract. These notes present the main results of [22, 23, 24] concerning the mass critical
(gKdV) equation ut + (uxx + u5)x = 0 for initial data in H1 close to the soliton. These
works revisit the blow up phenomenon close to the family of solitons in several directions:
definition of the stable blow up and classification of all possible behaviors in a suitable
functional setting, description of the minimal mass blow up in H1, construction of various
exotic blow up rates in H1, including grow up in infinite time.

1. Introduction

In these notes, we present a series of recent works [22, 23, 24] on the description of the long
time dynamics of solutions of the L2-critical generalized Korteweg–de Vries equation (gKdV)

(gKdV)

{
ut + (uxx + u5)x = 0, (t, x) ∈ [0, T )× R,
u(0, x) = u0(x), x ∈ R. (1)

The main objective of these works is to determine all possible behaviors of solutions of (1)
for initial data close in H1 to the solitons. It turns out that the answer is rather subtle since
to provide a satisfactory classification and in particular, to understand the “stable” blow up
(in a sense to clarify later), H1 is not exactly the right setting. For H1 initial data satisfying
a suitable space decay property (see the definition of the set A in (13)), we prove that only
three possible behaviors can occur:

(Blowup) The solution blows up in finite time T > 0 with blow up rate 1
T−t .

(Soliton) The solution is global and locally converges to a soliton in large time.

(Exit) The solution defocuses and eventually exits any small neighborhood of the solitons.

We also clarify the minimal mass blow up dynamics in H1, proving existence and uniqueness
of a minimal mass blow up solution. This minimal mass solution happens to be a universal
object in the problem since it appears in the behavior of all solutions in the (Exit) case. We
present a new and general approach to both:

- construct the minimal mass solution ;
- prove the universality of the (Exit) case and get “no-return” lemmas based on the properties

of the minimal mass solution.

Finally, we exhibit a large variety of “exotic” blow up rates (including grow up in infinite
time) for initial data in H1 which do not satisfying the decay assumption. This proves the
necessity of such an assumption to obtain stable blow up.

We will also give various references concerning previous works related to these questions on
other nonlinear dispersive equations.
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1.1. Preliminary information on critical (gKdV). The Cauchy problem for (1) is locally
well posed in the energy space H1 from Kenig, Ponce and Vega [10]: given u0 ∈ H1, there
exists a unique1 maximal solution u(t) of (1) in C([0, T ), H1) with either T = +∞, or T < +∞
and then limt→T ‖ux(t)‖L2 = +∞ (blow up). Moreover, for H1 solutions, mass and energy
are conserved by the flow: ∀t ∈ [0, T ),

M(u(t)) =

∫
u2(t) = M0, E(u(t)) =

1

2

∫
u2x(t)− 1

6

∫
u6(t) = E0,

where M0 = M(u0), E0 = E(u0). Recall also that the scaling symmetry (λ > 0)

uλ(t, x) = λ
1
2u(λ3t, λx)

leaves invariant the L2 norm so that the problem is mass critical.

The family of travelling wave solutions

u(t, x) = λ
− 1

2
0 Q

(
λ−10 (x− λ−20 t− x0)

)
, (λ0, x0) ∈ R∗+ × R,

with

Q(x) =

(
3

cosh2 (2x)

) 1
4

, Q′′ +Q5 = Q, E(Q) = 0, (2)

plays a distinguished role in the analysis. It is well-known that, from a variational argument
[45], H1 initial data with subcritical mass ‖u0‖L2 < ‖Q‖L2 generate global and bounded so-
lutions (T = +∞).

The study of singularity formation for H1 initial data with mass close to the minimal mass

‖Q‖L2 ≤ ‖u0‖L2 < ‖Q‖L2 + α∗, α∗ � 1, (3)

has been initiated in a series of works by Martel and Merle [17, 18, 26, 19, 21, 20] where mainly
two new tools were introduced: (1) monotonicity formula and localized virial identities, (2)
Liouville type theorems to classify asymptotic solutions. In particular, the first proof of blow
up in finite or infinite time is obtained for initial data

u0 ∈ H1 with (3) and E(u0) < 0. (4)

The proof is indirect and based on a classification argument [17, 26]. A related result [19] says
that if u(t) blows up in finite or infinite time T with (3), then it admits near blow up time a
decomposition of the form

u(t, x) =
1

λ
1
2 (t)

(Q+ ε)

(
t,
x− x(t)

λ(t)

)
with ε(t)→ 0 in L2

loc as t→ T. (5)

Finally, in [20], for initial data

u0 satisfying (4) and
∫

x′>x
u20(x

′)dx′ <
C

x6
for x > 0, (6)

blow up is proved to occur in finite time T and the following upper bound is proved for a
sequence tn → T :

‖ux(tn)‖L2 ≤ C(u0)

T − tn
. (7)

1in a certain sense
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Concerning the minimal mass problem ‖u0‖L2 = ‖Q‖L2 , assuming in addition the following
decay

∫
x′>x u

2
0(x
′)dx′ < C

x3
for x > 0, it was proved in [21] that the solution is global and does

not blow up in infinite time.

1.2. Blow up in H1 for the L2 critical NLS. We now draw a parallel between L2 critical
gKdV and NLS equations

(NLS)

{
i∂tu+ ∆u+ |u| 4N u = 0,
u|t=0 = u0

(t, x) ∈ [0, T )× RN (8)

which display a similar structure. The solitary wave QNLS is the unique (up to translation)

H1 nonnegative solution of ∆QNLS − QNLS + Q
1+ 4

N
NLS = 0 ( in dimension one, it is the same

function Q as before). Solutions of (NLS) with initial data in H1 with ‖u0‖L2 < ‖QNLS‖L2

are global and bounded ([45]).

For u0 ∈ H1 with minimal mass ‖u0‖L2 = ‖QNLS‖L2 , Merle [25] proved that the only blow
up solution (up to the symmetries of the equation) is the explicit one

SNLS(t, x) =
1

tN/2
e−i(

|x|2
4t
− 1

t
)QNLS

(x
t

)
. (9)

For negative energy initial data close to solitons, double log correction to self similarity for
stable blow up was conjectured from numerics by Landman, Papanicolou, Sulem and Sulem
[41]. A family of such solutions was then rigorously constructed by Perelman in dimension
one, [42].

In contrast, as shown by Bourgain and Wang [2] (see also Krieger, Schlag [14]), there are
blow up solutions of the type (9) (‖u(t)‖H1 ∼ c

T−t at the blow up time) with mass strictly
larger than the mass of QNLS. Such solutions correspond to an unstable threshold dynamics
as recently proved by Merle, Raphaël, Szeftel [32].

Next, the program developed by Merle and Raphaël [27, 28, 29, 6, 36, 30, 31] for the mass
critical nonlinear Schrödinger equation in dimensions 1 ≤ N ≤ 5 (any dimension, up to a
spectral assumption) has led to a complete description of the stable blow up scenario for small
super critical mass H1 initial data

‖QNLS‖L2 < ‖u0‖L2 < ‖QNLS‖L2 + α∗, α∗ � 1. (10)

In particular, an H1 open set of solutions is exhibited where solutions blow up in finite time
at the so-called log–log speed:

‖∇u(t)‖L2 ∼ C∗
√

log|log(T − t)|
T − t . (11)

Moreover, nonpositive energy solutions belong to this set of generic blow up. Finally, under
(10), the quantization of the focused mass at blow up is proved

|u(t)|2 ⇀ ‖QNLS‖2L2δx=x(T ) + |u∗|2, u∗ ∈ L2. (12)

Natural analogies have been made between mass critical problems and energy critical prob-
lems for which similar results now exist. For the energy critical wave map problem, after the
pioneering work of Rodnianski and Sterbenz [43], a complete description of a generic finite
time blow up dynamics (log correction to the self similar speed) was given by Raphaël and
Rodnianski [38], while unstable regimes with different speeds were constructed by Krieger,
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Schlag, Tataru [15]. See also Merle, Raphaël, Rodnianski [33] for the Schrödinger map system
and Raphaël, Schweyer [39] for the parabolic harmonic heat flow.

2. Statement of the results for L2 critical (gKdV)

Consider for 0 < α0 � 1, the set of initial data

A =

{
u0 = Q+ ε0 with ‖ε0‖H1 < α0 and

∫

y>0
y10ε20 < 1

}
. (13)

2.1. Nonpositive energy blow up in A.
Theorem 1 (Blow up for nonpositive energy solutions in A, [22]). Let 0 < α0 � 1. Let
u0 ∈ A. If E(u0) ≤ 0 and u0 is not a soliton, then u(t) blows up in finite time T and there
exists `0 = `0(u0) > 0 such that

‖ux(t)‖L2 ∼ ‖Q′‖L2

`0(T − t)
as t→ T . (14)

Moreover, there exist λ(t), x(t) and u∗ ∈ H1, u∗ 6= 0, such that

u(t, x)− 1

λ
1
2 (t)

Q

(
x− x(t)

λ(t)

)
→ u∗ in L2 as t→ T, (15)

λ(t) ∼ `0(T − t), x(t) ∼ 1

`20(T − t)
as t→ T, (16)

Comments on Theorem 1

1. Blow up speed and stable blow up. An important feature of Theorem 1 is the derivation of
the blow up speed for u0 ∈ A with non positive energy:

‖ux(t)‖L2 ∼ C(u0)

T − t (17)

which implies in particular that x(t) → +∞ as t → T . The concentrating soliton and the
remainder term u∗ thus split spatially. Observe that the blow up speed is far above the scaling
blow up law which would be for (gKdV): ‖ux(t)‖L2 ∼ c/(T − t) 1

3 (see [33], [39] for a similar
gap phenomenon in energy critical geometrical problems ).
To complemenent Theorem 1, we claim that the set of initial data in A which led to the blow
up (14)–(16) is open in the H1 topology (see [22]). We thus call stable blow up such behavior.

2. Decay assumption on the right. Let us stress the importance of the decay assumption on
the right in space for the initial data, which was already fundamental in the earlier works [20],
[21]. Indeed, in contrast with the NLS equation, the universal dynamics can not be seen in
H1 and an additional assumption of decay to the right is required (see Theorem 4 below).
Note however, that we do not claim sharpness in the y10 weight in Theorem 1.

3. Dynamical characterization of Q: Recall from the variational characterization of Q that
E(u0) ≤ 0 implies ‖u0‖L2 > ‖Q‖L2 , unless u0 ≡ Q up to scaling and translation symmetries.
Theorem 1 therefore recovers the dynamical classification of Q as the unique global zero energy
solution in A, like for the mass critical (NLS), see [31].
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2.2. Minimal mass blow up.

Theorem 2 (Existence and uniqueness of the minimal mass blow up element, [23]).
(i) Existence. There exists a solution S(t) ∈ C((0,+∞), H1) of (1) with minimal mass

‖S(t)‖L2 = ‖Q‖L2

which blows up backward at the origin:

‖S(t)‖H1 ∼ ‖Q
′‖L2

t
as t ↓ 0, (18)

S(t, x)− 1

t
1
2

Q

(
x+ 1

t + ct

t

)
→ 0 in L2 as t ↓ 0

where c is a universal constant. Moreover, S is smooth and exponentially decays at the right
in space:

∀x ≥ 1, S(1, x) ≤ e−Cx. (19)
(ii) Uniqueness. Let u0 ∈ H1 with ‖u0‖L2 = ‖Q‖L2 and assume that the corresponding
solution u(t) to (1) blows up in finite time. Then

u ≡ S
up to the symmetries of the flow.

Observe that S(t) blows up with the same speed as the negative energy blow up obtained
in Theorem 1. However, the minimal mass blow up is by essence unstable by perturbation
since for example initial data Sε(0) = (1 − ε)S(0), for ε > 0, has subcritical mass and thus
leads to a global, bounded solution. Theorem 2 shows that the decay assumption to the right
in [21] is essential and that the (unique) minimal blow up solution has slow decay to the left2.

2.3. Classification of the dynamics in A. Define the L2 modulated tube around the soliton
manifold:

Tα∗ =



u ∈ H

1 with inf
λ0>0, x0∈R

∥∥∥u− 1

λ
1
2
0

Q

(
.− x0
λ0

)∥∥∥
L2
< α∗



 . (20)

Here α0, α
∗ are universal constants with

0 < α0 � α∗ � 1. (21)

Theorem 3 (Rigidity of the dynamics in A, [22, 23]). For u0 ∈ A, only three scenarios are
possible:

(Blow up) For all t ∈ [0, T ), u(t) ∈ Tα∗ and the solution blows up in finite time T < +∞ in
the regime described by Theorem 1 (14), (15), (16).

(Soliton) The solution is global, for all t ≥ 0, u(t) ∈ Tα∗, and there exist λ∞ > 0 and x(t)
such that

λ
1
2∞u(t, λ∞ ·+x(t))→ Q in H1

loc as t→ +∞, (22)

|λ∞ − 1| ≤ oα0→0(1), x(t) ∼ t

λ2∞
as t→ +∞. (23)

2remember that it blows up backwards in time.
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(Exit) There exists t∗ ∈ (0, T ) such that u(t∗) 6∈ Tα∗. Let t∗u � 1 be the corresponding exit
time. Then there exist τ∗ = τ∗(α∗) (independent of u) and (λ∗u, x

∗
u) such that

∥∥∥(λ∗u)
1
2u (t∗u, λ

∗
ux+ x∗u)− S(τ∗, x)

∥∥∥
L2
≤ δI(α0),

where δI(α0)→ 0 as α0 → 0.

The exit time t∗u in Theorem 3 is defined as follows:

t∗ = sup{0 < t < T ; such that ∀t′ ∈ [0, t], u(t) ∈ Tα∗}. (24)

In view of the universality of S as a attractor to all exiting solutions, and in continuation of
Theorem 3, it is an important open problem to understand the behavior of S(t) as t→ +∞.
For the mass critical (NLS), SNLS(t) scatters as t → ∞. For (gKdV), scattering of S(t)
as t → +∞ is an open problem3. We conjecture that S(t) actually scatters, and because
scattering is an open in L2 property (see [11]), we obtain the corollary:

Corollary 1 ([23]). Assume that S(t) scatters as t → +∞. Then any solution in the (Exit)
scenario is global for positive time and scatters as t→ +∞.

Related rigidity theorems near the solitary wave were recently obtained by Nakanishi and
Schlag [34], [35] and Krieger, Nakanishi and Schlag [13], for super critical wave and Schrödinger
equations using the invariant set methods of Beresticky and Cazenave [1], the Kenig and Merle
concentration compactness approach [9], the classification of minimal dynamics [4], [5], and
a further “no return” lemma in the (Exit) regime. In the analogue of the (Exit) regime, this
lemma shows that the solution cannot come back close to solitons and in fact scatters. In
critical situations, such an analysis is more delicate and incomplete, see [13], and both the
blow up statements and the no return lemma in [34], [35] rely on a specific algebraic structure
- the virial identity - which does not exist for (gKdV).

2.4. Exotic blow up rates for initial data with slow decay. Now we produce a wide
range of different blow up rates, including grow up in infinite time, for initial data u0 6∈ A
having slow decay on the right. In particular, the blow up rate 1

(T−t) , which is universal in A,
is not valid anymore for such initial data.

Theorem 4 (Exotic blow up rates, [24]).
(i) Blow up in finite time: for any ν > 11

13 , there exists u ∈ C((0, T0), H
1) solution of (1)

blowing up at t = 0 with
‖ux(t)‖L2 ∼ t−ν as t→ 0+. (25)

(ii) Grow up in infinite time: there exists u ∈ C([T0,+∞), H1) solution of (1) blowing up at
+∞ with

‖ux(t)‖L2 ∼ et as t→ +∞. (26)

For any ν > 0, there exists u ∈ C([T0,+∞), H1) solution of (1) blowing up at +∞ with

‖ux(t)‖L2 ∼ tν as t→ +∞. (27)

Moreover, such solutions can be taken arbitrarily close in H1 to solitons.

3by scattering for (gKdV), we mean that there exists a solution v(t, x) to the Airy equation ∂tv+ vxxx = 0
such that limt→+∞ ‖S(t)− v(t)‖L2 = 0.
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As one can see from the proof of Theorem 4 in [24], the grow up rate is directly related
to the peculiar behavior of the initial data on the right. In particular, other type of blow
up speeds can be produced by similar arguments by changing the tail of the initial data. A
similar phenomenon was observed for global in time growing up solutions to the parabolic
energy critical harmonic heat flow by Gustafson, Nakanishi and Tsai [7]. In [7], an explicit
formula on the growth of the solution at infinity is given directly in terms of the initial data.
Continuums of blow up rates were also observed in pioneering works by Krieger, Schlag and
Tataru [15], [16] for energy critical wave problems, see also Donninger and Krieger [3]. All
these results point out that the critical topology is not enough by itself to classify the flow
near the ground state.

3. Refined ansatz and formal derivation of the dynamics in A
We first look formally for a solution of (1) of the form

u(t, x) =
1

λ
1
2 (t)

Qb(t)

(
t,
x− x(t)

λ(t)

)
, (28)

where Qb is close to Q for b small. In the case of the (gKdV) equation, a first order approxi-
mation of Qb in b happens to be enough:

Qb = Q+ bP,

where P (x) is a function to be determined (this is contrast with the (NLS) equation - see [27]).

Let us use the following notation, for a function f = f(x):

Lf = −f ′′ + f − 5Q4f,

Λf =
1

2
f + yf ′,

f (λ,x)(t, x) =
1

λ
1
2 (t)

f

(
x− x(t)

λ(t)

)
.

We note the L2 scalar product: (f, g) =
∫
f(x)g(x)dx.

From (28), we get

ut = −λt
λ

(ΛQb)
(λ,x) − xt

λ
(Q′b)

(λ,x) + btP
(λ,x),

and thus, changing variables, u(t, x) is solution of (1) if

−λ2λtΛQb +
(
Q′′b − λ2xtQb +Q5

b

)′
+ λ3btP = 0.

We fix
λ2xt = 1 and − λ2λt = b,

and we expand at order one in b, using Q′′ −Q+Q5 = 0, to obtain

bΛQ+ b(LP )′ + λ3btP +O(b2) = 0. (29)

We further fix (recall that the function P is to be chosen, as the geometrical parameters
(b, λ, x))

(LP )′ = −ΛQ,

Exp. no XXXVII— Blow up for critical gKdV
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and we claim that with this choice of function P , one obtains from (29)

λ3bt = −2b2

(we refer the reader to [22] for a detailled computation at order 2 in b). Combining the
equations of λt and bt obtained above, one gets

d

dt

(
b

λ2

)
=

1

λ2

(
bt − 2

λt
λ
b

)
= 0,

and thus
−λt =

b

λ2
= `0.

Formally, we obtain the three scenarios of Theorem 3 depending on the sign of `0:
• `0 > 0: λt = −`0 < 0 and so blow up happens in finite time T and λ(t) = `0(T−t). For
example, this case is obtained if E0 ≤ 0 (and this explains the blow up rate obtained
in Theorem 1).
• `0 = 0: λ(t) = C and the solution behaves essentially as a soliton.
• `0 < 0: λt = −`0 > 0 thus the solution first defocuses and then exits any small
neighborhood of the soliton (see Section 5).

Let us now stress the main difficulties to achieve the proof of Theorems 1 and 3:
(1) First, when considering a solution close to the soliton, there is an remainder term,

which we have to control and maintain small in some functional space. The control of
the remainder term, which is a main point in [22], will be sketched in the next section.

(2) Second, the idealized dynamical system in (b, λ, x) obtained above is perturbed by ε
and higher order terms in b.

(3) Third, note that since
∫

ΛQ 6= 0, there exists no solution P ∈ L2 of (LP ′) = ΛQ.
Therefore, one needs to consider a solution which does not tend to zero at −∞ and
then apply a cut-off. The approximate profile Qb is thus slightly more involved than
Q+ bP .

4. Control of the remainder term

A solution u(t, x) of (1) close in H1 to a soliton is canonically decomposed as

u(t, x) =
1

λ
1
2 (t)

(Qb(t) + ε)

(
t,
x− x(t)

λ(t)

)

where the parameters (b(t), λ(t), x(t)) are uniquely adjusted to obtain orthogonality conditions
on ε for all time ∫

εQ =

∫
εΛQ =

∫
εyΛQ = 0. (30)

Changing time as follows
ds

dt
=

1

λ3
,

the equation of u(t, x) and Qb implies

εs − (Lε)y =

(
λs
λ

+ b

)
ΛQ+

(xs
λ
− 1
)
Q′ +

λs
λ

Λε+O
(
b2 + |bs|+ |ε|2

)
. (31)

The dynamical system in (b, λ, x) can be obtained from this equation and (30), with pertur-
bation terms coming from b2, bs and ε. The fundamental point to justify the dynamics of the

Yvan Martel, Frank Merle and Pierre Raphaël
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parameters is to obtain a uniform control of ε(s) in some norm.

Neglecting for the moment second order term, we concentrate on a toy model:

ε̃s − (Lε̃)y = α(s)ΛQ+ β(s)Q′ (32)

for which we claim

Lemma 5. Let ε̃(s, y) be a solution of (32) satisfying the orthogonality conditions (30). Then,
(1) Energy conservation at ε̃ level:

∀s, (Lε̃(s), ε̃(s)) = Cte. (33)

(2) Virial estimate
d

ds

∫
yε̃2 = −H(ε̃, ε̃), (34)

where

H(ε̃, ε̃) =

∫ (
3ε̃2y + ε̃2 − 5Q4ε̃2 + 20yQ′Q3ε̃2

)
≥ µ0‖ε̃(s)‖2H1 . (35)

(3) Mixed Virial and energy-monotonicity estimate: for B � 1, µ1 > 0,

d

ds

[∫
ε̃2yψ

( y
B

)
+ ε̃2ϕ

( y
B

)
− 5Q4ε̃2ψ

( y
B

)]
+ µ1

∫ (
ε̃2y + ε̃2

)
ϕ′
( y
B

)
≤ 0, (36)

∫
ε̃2yψ

( y
B

)
+ ε̃2ϕ

( y
B

)
− 5Q4ε̃2ψ

( y
B

)
≥ µ1

∫
ε̃2yψ

( y
B

)
+ ε̃2ϕ

( y
B

)
, (37)

where the smooth functions ϕ and ψ satisfy

ϕ(y) =





ey for y < −1,

1 + y for − 1
2 < y < 1

2 , ϕ′ ≥ 0 on R,
y for y > 1,

(38)

ψ(y) =

{
e2y for y < −1,

1 for y > −1
2 , ψ′ ≥ 0 on R.

(39)

Proof. Identities (33) and (34) are obtained by direct computations from the equation of ε and
classical properties of L (see [45]). The coercivity ofH(ε, ε) is proved in [17]. The estimate (36)
follows from direct computations and estimates, and the use of (35) on a suitable localization
of ε. It combines in a sharp way monotonicity arguments first derived in L2 in [17] (reminiscent
of the Kato smoothing effect [8]) and localized type Virial estimates. The coercivity property
(37) is a consequence of well-known properties of the operator L, such as (for µ > 0)

(ε,Q) = (ε,Q′) = (ε,ΛQ) = 0 ⇒ (Lε, ε) ≥ µ‖ε‖2H1 ,

(see [45]), and localisation arguments. �

A main novelty in [22] is the introduction of such a mixed Virial and energy-monotonicity
functional for ε. Indeed, it follows from long but direct arguments that a similar estimate holds
for ε solution of the full nonlinear equation (31) provided we assume some a priori control on
ε and the geometrical parameters.
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For B � 1, define

N (s) =

∫
ε2yψ

( y
B

)
+ ε2ϕ

( y
B

)
,

Fi(s) =

∫
ε2yψ

( y
B

)
+ ε2(1 + Ji)ϕ

( y
B

)
− 1

3

(
(ε+Qb)

6 −Q6
b − 6εQ5

b

)
ψ
( y
B

)
,

Ji = (1− J1)−4i − 1, J1 = (ε, ρ1), ρ1(y) =
4

(∫
Q
)2
∫ y

−∞
ΛQ.

Proposition 6 ([22]). Assume that on some interval [0, s0],
(H1) smallness:

‖ε(s)‖L2 + |b(s)|+N (s) ≤ κ∗; (40)
(H2) comparison between b and λ:

|b(s)|+N (s)

λ2(s)
≤ κ∗; (41)

(H3) L2 weighted bound on the right:
∫

y>0
y10ε2(s, x)dx ≤ 10

(
1 +

1

λ10(s)

)
. (42)

Then the following bounds hold on [0, s0]: for B � 1, µ > 0,
(i) Scaling invariant Lyapounov control:

d

ds
F1 + µ

∫ (
ε2y + ε2

)
ϕ′
( y
B

)
. |b|4. (43)

(ii) Scaling weighted H1 Lyapounov control:

d

ds

{F2

λ2

}
+

µ

λ2

∫ (
ε2y + ε2

)
ϕ′
( y
B

)
. |b|

4

λ2
. (44)

(iii) Pointwise bounds:
|J1|+ |J2| . N

1
2 , (45)

N . Fj . N , j = 1, 2. (46)

Time integration of equations of the parameters (b, λ, x) (from equation (31)) with the
dispersive bounds of Proposition 6 imply the following control of the flow by the parameter b.

Lemma 7 (Control of the flow by b, [22]). Under assumptions (H1)-(H2)-(H3) of Proposi-
tion 6, the following hold:
(i) Control of the dynamics for b. For all 0 ≤ s1 ≤ s2 < s0,∫ s2

s1

b2(s)ds .
∫ (

ε2y + ε2
)

(s1)ϕ
′
( y
B

)
+ |b(s2)|+ |b(s1)|, (47)

∣∣∣∣
b(s2)

λ2(s2)
− b(s1)

λ2(s1)

∣∣∣∣ ≤
C∗

10

[
b2(s1)

λ2(s1)
+
b2(s2)

λ2(s2)
+

1

λ2(s1)

∫ (
ε2y + ε2

)
(s1)ϕ

′
( y
B

)]
, (48)

for some universal constant C∗ > 0.
(ii) Control of the scaling dynamics. Let λ0(s) = λ(s)(1− J1(s))2. Then on [0, s0),∣∣∣∣

(λ0)s
λ0

+ b

∣∣∣∣ .
∫
ε2e−

|y|
10 + |b|N 1

2 + |b|2. (49)
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(iii) Dispersive bounds. For all 0 ≤ s1 ≤ s2 < s0,

N (s2) +

∫ s2

s1

[∫ (
ε2y + ε2

)
(s)ϕ′

( y
B

)
+ |b|4(s)

]
ds . N (s1) + (|b3(s2)|+ |b3(s1)|). (50)

N (s2)

λ2(s2)
+

∫ s2

s1

[∫ (
ε2y + ε2

)
(s)ϕ′

( y
B

)
+ |b|4(s)

]
ds

λ2(s)
. N (s1)

λ2(s1)
+

[ |b3(s1)|
λ2(s1)

+
|b3(s2)|
λ2(s2)

]
. (51)

Note that in the proofs of Theorem 1 and Theorem 3, the rigorous estimates (48) and (49),
together with the control of ε from (50) and (51), replace the two idealized equations obtained
in Section 3:

d

ds

(
b

λ2

)
= 0,

λs
λ

+ b = 0.

The quantity J1, introduced both in the definition of Fi and the definition of λ0 may
seem mysterious at this point. In these definitions, the introduction of J1 provides suitable
cancellations of diverging terms. Since ρ1 6∈ L2, it is one more indication that the (gKdV)
flow cannot be fully explained in H1 but requires some decay assumption on the solution.

5. Minimal mass blow up solution and the (Exit) scenario

The construction of the minimal mass solution and the determination of the universal
behavior of solutions in the (Exit) regime follow a unified compactness strategy.

5.1. Construction of the minimal mass solution. The minimal element is obtained as
the limit of sequences of defocusing solutions. Indeed, we pick a sequence of well prepared
initial data

un(0) = Qbn(0), bn(0) = − 1

n
which by construction have subcritical mass

‖un(0)‖L2 − ‖Q‖L2 ∼ c

n
.

Such solutions are necessarily in the (Exit) regime of Theorem 3 and we denote by t∗n the
corresponding exit time (see (24)). Moreover, we have from [22] (see also the formal discussion
of Section 3) a precise description of the flow in the time interval [0, t∗n], in particular, we know
that the solution admits a decomposition

un(t, x) =
1

λ
1
2
n (t)

(Qbn(t) + εn)

(
t,
x− xn(t)

λn(t)

)
(52)

where to leading order (bn, λn) behave as follows
bn(t)

λ2n(t)
∼ bn(0) = − 1

n
, (λn)t ∼ −bn(0),

λn(t) ∼ 1− bn(0)t, bn(t) ∼ bn(0)λ2n(t). (53)
The (Exit) time t∗n is the one for which the solution moves strictly away from the solitary
wave which in our setting is equivalent to

bn(t∗n) ∼ −α∗,
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independent of n. This allows us to compute t∗n and show using (53) that the solution defocuses:

λ2n(t∗n) ∼ bn(t∗n)

bn(0)
∼ nα∗ as n→ +∞.

Next, we renormalize the flow at t∗n, considering the solution of (gKdV) defined by

vn(τ, x) = λ
1
2
n (t∗n)un(tτ , λn(t∗n)x+ xn(t∗n)), tτ = t∗n + τλ3n(t∗n).

From direct computations, vn admits a decomposition

vn(τ, x) =
1

λ
1
2
vn(τ)

(Qbvn + εvn)

(
τ,
x− xvn(τ)
λvn(τ)

)

with from the symmetries of the flow

λvn(τ) =
λn(tτ )

λn(t∗n)
, xvn(τ) =

xn(tτ )− xn(tn)

λn(t∗n)
, bvn(τ) = bn(tτ ), εvn(τ) = εn(tτ ).

The renormalized parameters can be computed at main order using (53):

λvn(τ) ∼ 1

λn(t∗n)

[
1− bn(0)(t∗n + τλ3n(t∗n))

]

∼ 1

λn(t∗n)

[
λn(t∗n)− τbn(0)λ3n(t∗n)

]
∼ 1− τbn(t∗n) ∼ 1 + τα∗.

Observe that the law of λvn(τ) at this order does not depend on n, which is a remarkable
property, decisive in our approach. Letting n → +∞, we extract a weak limit vn(0) ⇀ v(0)
such that the corresponding solution v(τ) to (gKdV) blows up backwards at some finite time
τ∗ ∼ − 1

α∗ with the blow up speed λv(τ) ∼ τ − τ∗ i.e (18). Note that the extraction of the
weak limit requires sharp controls on the remaining radiation εvn . Here an essential use is
made of the fact that the set of data un(0) is well prepared as this induces uniform bounds for
εvn(0) = εun(t∗n) in H1 and allow us to use the H1 weak continuity of the flow in the limiting
process. Note also that by the weak convergence ‖v‖L2 ≤ ‖Q‖L2 , but since the solution v(τ)
blow up in finite time, it has exactly the minimal mass.

For uniqueness, we refer the reader to [23].

5.2. Solutions in the (Exit) regime. Now, we prove the universality of S as attractor in
the (Exit) case. For this, we consider a sequence of data (u0)n with ‖(u0)n‖L2 → ‖Q‖L2 as
n → +∞ such that the corresponding solution to (gKdV) is in the (Exit) regime. We write
the solution at the (Exit) time in the form (52), renormalize the flow and aim at extracting a
weak limit as n → +∞ as before. The strategy of the proof is similar, except that since the
data is not well prepared, no uniform H1 bound on vn(0) can be obtained. To get around, we
introduce two new tools: (1) a concentration compactness argument on sequences of solutions
in the critical L2 space in the spirit of [9] using the tools developed in [44], [12] for the Airy
group, which allows us to extract a non trivial weak limit with suitable dynamical controls;
(2) refined local H1 bounds on vn(τ) in order to ensure that the L2 limit actually belongs
to H1. Hence the weak limit is a minimal mass H1 blow up element, and by the uniqueness
statement of Theorem 2, it is S up to the symmetries of the equation. Therefore, we get the
final conclusion of Theorem 3.
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