Motivated by applications to approximate and exact controllability, we are interested in the following unique continuation question: assume the solution of the linear Schrödinger equation on a domain vanishes on a very small open set for a very short time interval, then is this solution identically zero? In the situation where the Schrödinger operator includes a potential, the answer to this question depends on the regularity of the latter. We present a result proved in [FLL24] which assumes that the potential is Gevrey in time and bounded in space, relaxing in this context the analyticity assumption of the Tataru-Robbiano-Zuily-Hörmander theorem. We also give a sketch of proof.
@article{SLSEDP_2023-2024____A9_0, author = {Spyridon Filippas and Camille Laurent and Matthieu L\'eautaud}, title = {On unique continuation for the {Schr\"odinger} equation}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:15}, pages = {1--13}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2023-2024}, doi = {10.5802/slsedp.172}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.172/} }
TY - JOUR AU - Spyridon Filippas AU - Camille Laurent AU - Matthieu Léautaud TI - On unique continuation for the Schrödinger equation JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:15 PY - 2023-2024 SP - 1 EP - 13 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.172/ DO - 10.5802/slsedp.172 LA - en ID - SLSEDP_2023-2024____A9_0 ER -
%0 Journal Article %A Spyridon Filippas %A Camille Laurent %A Matthieu Léautaud %T On unique continuation for the Schrödinger equation %J Séminaire Laurent Schwartz — EDP et applications %Z talk:15 %D 2023-2024 %P 1-13 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.172/ %R 10.5802/slsedp.172 %G en %F SLSEDP_2023-2024____A9_0
Spyridon Filippas; Camille Laurent; Matthieu Léautaud. On unique continuation for the Schrödinger equation. Séminaire Laurent Schwartz — EDP et applications (2023-2024), Exposé no. 15, 13 p. doi : 10.5802/slsedp.172. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.172/
[AB79] Serge Alinhac and Mohamed Salah Baouendi. Construction de solutions nulles et singulières pour des opérateurs de type principal. In Séminaire Goulaouic-Schwartz (1978/1979). École Polytech., Palaiseau, 1979. Exp. No. 22, 6 p. | Zbl
[AB95] Serge Alinhac and Mohamed Salah Baouendi. A nonuniqueness result for operators of principal type. Math. Z., 220(4):561–568, 1995. | DOI | Zbl
[Ali83] Serge Alinhac. Non-unicité du problème de Cauchy. Ann. of Math. (2), 117(1):77–108, 1983. | Zbl
[ALM16] Nalini Anantharaman, Matthieu Léautaud, and Fabricio Macià. Wigner measures and observability for the Schrödinger equation on the disk. Invent. Math., 206(2):485–599, 2016. | DOI | Zbl
[BLR92] Claude Bardos, Gilles Lebeau, and Jeffrey Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim., 30:1024–1065, 1992. | DOI | Zbl
[BP02] Lucie Baudouin and Jean-Pierre Puel. Uniqueness and stability in an inverse problem for the Schrödinger equation. Inverse Problems, 18(6):1537–1554, 2002. | DOI | Zbl
[Car39] Torsten Carleman. Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendantes. Ark. Mat. Astr. Fys., 26B(17):1–9, 1939. | Zbl
[Deh84] Belhassen Dehman. Unicité du problème de Cauchy pour une classe d’opérateurs quasi-homogènes. J. Math. Kyoto Univ., 24(3):453–471, 1984. | DOI | Zbl
[DR77] Szymon Dolecki and David L. Russell. A general theory of observation and control. SIAM J. Control Optim., 15(2):185–220, 1977. | DOI | Zbl
[FLL24] Spyridon Filippas, Camille Laurent, and Matthieu Léautaud. Unique continuation for Schrödinger operators with partially Gevrey coefficients, 2024. | arXiv
[Gev18] Maurice Gevrey. Sur la nature analytique des solutions des équations aux dérivées partielles. premier mémoire. Annales Scientifiques de l’École Normale Supérieure, 35:129–190, 1918. | DOI | Zbl
[Hör63] Lars Hörmander. Linear Partial Differential Operators. Springer-Verlag, Berlin, 1963. | Zbl
[Hör92] Lars Hörmander. A uniqueness theorem for second order hyperbolic differential equations. Comm. Partial Differential Equations, 17(5-6):699–714, 1992. | DOI | Zbl
[Hör94] Lars Hörmander. The analysis of linear partial differential operators. IV, volume 275 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1994. Fourier integral operators, Corrected reprint of the 1985 original.
[Hör97] Lars Hörmander. On the uniqueness of the Cauchy problem under partial analyticity assumptions. In Geometrical optics and related topics (Cortona, 1996), volume 32 of Progr. Nonlinear Differential Equations Appl., pages 179–219. Birkhäuser Boston, Boston, MA, 1997. | DOI | Zbl
[Hör00] Lars Hörmander. A counterexample of Gevrey class to the uniqueness of the Cauchy problem. Math. Res. Lett., 7(5-6):615–624, 2000. | DOI | Zbl
[Isa93] Victor Isakov. Carleman type estimates in an anisotropic case and applications. J. Differential Equations, 105(2):217–238, 1993. | DOI | Zbl
[Lau10] Camille Laurent. Global controllability and stabilization for the nonlinear Schrödinger equation on some compact manifolds of dimension 3. SIAM J. Math. Anal., 42(2):785–832, 2010. | DOI | Zbl
[LL19] Camille Laurent and Matthieu Léautaud. Quantitative unique continuation for operators with partially analytic coefficients. Application to approximate control for waves. J. Eur. Math. Soc. (JEMS), 21(4):957–1069, 2019. | DOI | Zbl
[LL21] Camille Laurent and Matthieu Léautaud. Observability of the heat equation, geometric constants in control theory, and a conjecture of Luc Miller. Anal. PDE, 14(2):355–423, 2021. | DOI | Zbl
[LL23] Camille Laurent and Matthieu Léautaud. Lectures on unique continuation for waves, 2023. | arXiv
[LZ82] Richard Lascar and Claude Zuily. Unicité et non unicité du problème de Cauchy pour une classe d’opérateurs différentiels à caractéristiques doubles. Duke Math. J., 49(1):137–162, 1982. | Zbl
[Mas67] Kyûya Masuda. A unique continuation theorem for solutions of the Schrödinger equations. Proceedings of the Japan Academy, 43(5):361–364, 1967. | DOI | Zbl
[Mil74] Keith Miller. Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients. Arch. Rational Mech. Anal., 54:105–117, 1974. | DOI | Zbl
[MOR08] Alberto Mercado, Axel Osses, and Lionel Rosier. Inverse problems for the Schrödinger equation via Carleman inequalities with degenerate weights. Inverse Problems, 24(1):015017, 18, 2008. | DOI | Zbl
[Pli63] Andrzej Pliś. On non-uniqueness in Cauchy problem for an elliptic second order differential equation. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 11:95–100, 1963. | Zbl
[Rob91] Luc Robbiano. Théorème d’unicité adapté au contrôle des solutions des problèmes hyperboliques. Comm. Partial Differential Equations, 16(4-5):789–800, 1991. | DOI | Zbl
[RT74] Jeffrey Rauch and Michael Taylor. Exponential decay of solutions to hyperbolic equations in bounded domains. Indiana Univ. Math. J., 24:79–86, 1974. | DOI | Zbl
[RZ98] Luc Robbiano and Claude Zuily. Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients. Invent. Math., 131(3):493–539, 1998. | DOI | Zbl
[Tak21] Hiroshi Takase. Infinitely many non-uniqueness examples for Cauchy problems of the two-dimensional wave and Schrödinger equations. Proc. Japan Acad. Ser. A Math. Sci., 97(7):45–50, 2021. | DOI | Zbl
[Tat95] Daniel Tataru. Unique continuation for solutions to PDE’s; between Hörmander’s theorem and Holmgren’s theorem. Comm. Partial Differential Equations, 20(5-6):855–884, 1995. | DOI | Zbl
[Tat97] Daniel Tataru. Carleman estimates, unique continuation and controllability for anizotropic PDEs. In Optimization methods in partial differential equations (South Hadley, MA, 1996), volume 209 of Contemp. Math., pages 267–279. Amer. Math. Soc., Providence, RI, 1997. | DOI | Zbl
[Tat99] Daniel Tataru. Unique continuation for operators with partially analytic coefficients. J. Math. Pures Appl. (9), 78(5):505–521, 1999. | DOI | Zbl
[TX07] Roberto Triggiani and Xiangjin Xu. Pointwise Carleman estimates, global uniqueness, observability, and stabilization for Schrödinger equations on Riemannian manifolds at the -level. In Control methods in PDE-dynamical systems, volume 426 of Contemp. Math., pages 339–404. Amer. Math. Soc., Providence, RI, 2007. | DOI | Zbl
[T’j00] Laurent T’joën. Uniqueness in the Cauchy problem for quasi-homogeneous operators with partially holomorphic coefficients. Osaka J. Math., 37(4):925–951, 2000. | Zbl
Cité par Sources :