In the last years much progress has been achieved concerning the problem of determining the stability/instability of Stokes waves, i.e. periodic traveling solutions of the pure gravity water waves equations in an ocean of depth , subject to longitudinal perturbations. In this talk we review some of these results focusing the attention on the existence of unstable spectral bands away from zero for Stokes waves of small amplitude . In [11] we prove that the unstable spectrum is the union of “isolas” of approximately elliptical shape, parameterized by integers , with semiaxis of size where is a nonzero analytic function of the depth that depends on the Taylor coefficients of the Stokes waves up to order .
@article{SLSEDP_2023-2024____A3_0, author = {Massimiliano Berti}, title = {Stable and unstable {Stokes} waves}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:19}, pages = {1--14}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2023-2024}, doi = {10.5802/slsedp.166}, zbl = {1547.35515}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.166/} }
TY - JOUR AU - Massimiliano Berti TI - Stable and unstable Stokes waves JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:19 PY - 2023-2024 SP - 1 EP - 14 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.166/ DO - 10.5802/slsedp.166 LA - en ID - SLSEDP_2023-2024____A3_0 ER -
%0 Journal Article %A Massimiliano Berti %T Stable and unstable Stokes waves %J Séminaire Laurent Schwartz — EDP et applications %Z talk:19 %D 2023-2024 %P 1-14 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.166/ %R 10.5802/slsedp.166 %G en %F SLSEDP_2023-2024____A3_0
Massimiliano Berti. Stable and unstable Stokes waves. Séminaire Laurent Schwartz — EDP et applications (2023-2024), Talk no. 19, 14 p. doi : 10.5802/slsedp.166. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.166/
[1] P. Baldi, M. Berti, E. Haus, R. Montalto. Time quasi-periodic gravity water waves in finite depth, Inventiones Math. 214 (2), 739-911, 2018. | DOI | MR | Zbl
[2] T. Benjamin. Instability of periodic wavetrains in nonlinear dispersive systems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. Volume 299 Issue 1456, 1967.
[3] T. Benjamin and J. Feir. The disintegration of wave trains on deep water, Part 1. Theory. J. Fluid Mech. 27(3): 417-430, 1967. | DOI | Zbl
[4] M. Berti, L. Franzoi and A. Maspero. Traveling quasi-periodic water waves with constant vorticity, Arch. Rational Mech., 240, pages 99-202, 2021. | DOI | MR | Zbl
[5] M. Berti, L. Franzoi and A. Maspero. Pure gravity traveling quasi-periodic water waves with constant vorticity, Comm. Pure Applied Math., Volume 77, Issue 2 990-1064, 2024. | DOI | MR | Zbl
[6] M. Berti, A. Maspero and P. Ventura. Full description of Benjamin-Feir instability of Stokes waves in deep water, Inventiones Math., 230, 651–711, 2022. | DOI | MR | Zbl
[7] M. Berti, A. Maspero and P. Ventura. On the analyticity of the Dirichlet-Neumann operator and Stokes waves, Rend. Lincei Mat. Appl., 33, 611–650, 2022. | DOI | MR | Zbl
[8] M. Berti, A. Maspero and P. Ventura. Benjamin-Feir instability of Stokes waves in finite depth, Arch. Rational Mech. Anal. 247, 91, 2023. | DOI | MR | Zbl
[9] M. Berti, A. Maspero and P. Ventura. Stokes waves at the critical depth are modulation unstable, Comm. Math. Phys., 405:56, 2024. | DOI | MR | Zbl
[10] M. Berti, A. Maspero and P. Ventura. First isola of modulational instability of Stokes waves in deep water, 2024. | arXiv
[11] M. Berti, L. Corsi, A. Maspero and P. Ventura. Infinitely many isolas of modulational instability of Stokes waves”, 2024. | arXiv
[12] T. Bridges and A. Mielke. A proof of the Benjamin-Feir instability. Arch. Rational Mech. Anal. 133(2): 145–198, 1995. | DOI | MR | Zbl
[13] G. Chen and Q. Su. Nonlinear modulational instabililty of the Stokes waves in 2d full water waves, Comm. Math. Phys., 1345–1452, 2023. | DOI | MR | Zbl
[14] W. Craig and C. Sulem. Numerical simulation of gravity waves. J. Comput. Phys., 108(1): 73–83, 1993. | DOI | MR | Zbl
[15] R. Creedon, B. Deconinck. A high-order asymptotic analysis of the Benjamin-Feir instability spectrum in arbitrary depth, J. Fluid Mech. 956, A29, 2023. | DOI | MR | Zbl
[16] R. Creedon, B. Deconinck., O. Trichtchenko. High-frequency instabilities of Stokes waves, J. Fluid Mech. 937, A24, 2022. | DOI | MR | Zbl
[17] R. P. Creedon, H. Q. Nguyen, and W. A. Strauss. Proof of the transverse instability of Stokes waves, 2023. | arXiv
[18] B. Deconinck and K. Oliveras. The instability of periodic surface gravity waves, J. Fluid Mech., 675: 141–167, 2011. | DOI | MR | Zbl
[19] R. Feola, F. Giuliani, Quasi-periodic traveling waves on an infinitely deep fluid under gravity, Mem. Amer. Math. Soc. 295, no.1471, 2024. | DOI | MR | Zbl
[20] M. Haragus, T. Truong and E. Wahlén. Transverse dynamics of two-dimensional traveling periodic gravity–capillary water waves, Water Waves 5, 65–99, 2023. | DOI | MR | Zbl
[21] V. Hur and Z. Yang. Unstable Stokes waves, Arch. Rational Mech. Anal. 247, 62, 2023. | DOI | MR | Zbl
[22] T. Levi-Civita. Détermination rigoureuse des ondes permanentes d’ ampleur finie, Math. Ann. 93 , pp. 264-314, 1925. | DOI | MR | Zbl
[23] M. J. Lighthill. Contribution to the theory of waves in nonlinear dispersive systems, IMA Journal of Applied Mathematics, 1, 3, 269-306, 1965. | DOI | Zbl
[24] J. W. McLean. Instabilities of finite-amplitude water waves, J. Fluid Mech. 114, 315-330, 1982. | DOI | Zbl
[25] J. W. McLean. Instabilities of finite-amplitude gravity waves on water of infinite depth, J. Fluid Mech. 114, 331-341, 1982. | DOI | Zbl
[26] A. Nekrasov. On steady waves, Izv. Ivanovo-Voznesenk. Politekhn. 3, 1921.
[27] H. Nguyen and W. Strauss. Proof of modulational instability of Stokes waves in deep water, Comm. Pure Appl. Math., Volume 76, Issue 5, 899–1136, 2023.
[28] F. Rousset, N. Tzvetkov. Transverse instability of the line solitary water-waves, Inventiones Math. 184, 257–388, 2011. | DOI | MR | Zbl
[29] G. Stokes. On the theory of oscillatory waves, Trans. Cambridge Phil. Soc. 8: 441–455, 1847.
[30] D. Struik. Détermination rigoureuse des ondes irrotationelles périodiques dans un canal á profondeur finie, Math. Ann. 95: 595–634, 1926. | DOI | MR | Zbl
[31] Shalosh B. Ekhad and D. Zeilberger (with a postscript by M. van Hoeij). Efficient Evaluations of Weighted Sums over the Boolean Lattice inspired by conjectures of Berti, Corsi, Maspero, and Ventura. The Personal Journal of Shalosh B. Ekhad and Doron Zeilberger, 2024. http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/bcmv.html
[32] G.B. Whitham. Non-linear dispersion of water waves, J. Fluid Mech, volume 26 part 2 pp. 399-412, 1967. | DOI | MR | Zbl
[33] V. Zakharov. The instability of waves in nonlinear dispersive media, J. Exp.Teor.Phys. 24 (4), 740-744, 1967.
[34] V. Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep fluid, Zhurnal Prikladnoi Mekhaniki i Teckhnicheskoi Fiziki 9(2): 86–94, 1969.
Cited by Sources: