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Hyperuniformity of the two-dimensional
one-component plasma

Thomas Leblé

1 Introduction
1.1 Point processes and number variance
We study certain two-dimensional point processes, which are random finite or
locally finite collection of points in R2. When X is such a random variable,
it is natural to consider the counting statistics i.e. the (random) number of
points |X ∩ Λ| falling in various regions Λ ⊂ R2, as these are arguably the most
fundamental “observables” for point processes. We will adopt the following
convention:

1. Either X is a.s. finite, with a deterministic total number of points N all
contained in a certain “big box” ΣN which is specified when defining X, and
has area N .

2. Or X is a.s. infinite and satisfies (with DR the disk of center 0 and radius
R)

lim
R→∞

1
|DR|E[|X ∩ DR|] = 1. (1.1)

One can think of both cases as imposing that the average number of points per
unit volume be equal to 1 at large scales. However, it does not mean that if Λ
is a bounded region (contained in ΣN in the first case, or simply in R2 in the
second one) then we must have |X∩Λ| = |Λ| or even that E [|X ∩ Λ|] = |Λ|. We
call the random difference |X ∩ Λ| − |Λ| the discrepancy of X in Λ, we denote
it by Dis(X,Λ), and we raise two basic questions:

1. Centeredness of discrepancies? For Λ bounded, is E[|X ∩ Λ|] approxi-
mately equal to |Λ|, in other words are discrepancies approximately centered?
What is the size of the error when Λ is, say, some large disk or large square?

2. Number variance growth? How does the number variance, i.e. the vari-
ance of |X ∩ Λ| (note that this is of course also the variance of the discrepancy)
grow when Λ is chosen to be, say, some large disk or large square?

There are of course many more questions that one could ask about number
statistics, let us mention two others:
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3. Rigidity properties? The notion of number-rigidity (which is only rele-
vant for infinite point processes) was introduced by S. Ghosh, see [GP17]. The
point process is said to be number-rigid when for all bounded regions Λ, the
number statistics |X∩Λ| is a measurable function of the “exterior configuration”
X ∩ (R2 \ Λ) - in other words, one can hide the point configuration in Λ and
correctly guess the number of points falling in Λ by observing only the point
configuration outside Λ.
In fact, it is sometimes possible (even in truly random situations) to guess the
value of other statistics, like the center of mass, or higher moments of the point
configuration, or even the full configuration (one says that the process is fully
rigid), see [GL17].

4. Decay of correlations? This question could be phrased in many different
ways, the simplest one is to ask whether, when Λ is a bounded domain and
Λt corresponds to Λ shifted by t in a certain direction, the covariance between
|X ∩ Λ| and |X ∩ Λt| tends to 0 as t → ∞.
Another approach would be to ask about the k-point correlation functions ρk for
k ≥ 1 (assuming they all exist as functions) and their hypothetical “clustering”
properties, in particular whether ρ2(x, y)−ρ1(x)ρ1(y) tends to 0 as |x−y| → ∞
(and if yes at which speed).

1.2 A quick panorama of related point processes
Although our goal here is to say something about the “two-dimensional one-
component plasma” (2DOCP) which is a Gibbsian point process coming from
statistical physics, let us start by presenting a few other interesting two-dimen-
sional point processes and see how they behave in regard to the four questions
we just raised.

A. The Poisson point process By definition, the Poisson point process
(with intensity measure constant equal to 1) is such that:

i) In each bounded region Λ, the number of points |X ∩ Λ| follows a Poisson
distribution of parameter |Λ|.

ii) If Λ,Λ′ are disjoint then the configurations X ∩ Λ and X ∩ Λ′ are indepen-
dent.

From the first property we immediately see that:

1. The discrepancies are exactly centered.

2. The number variance in Λ grows exactly as the area of Λ. In particular, in a
disk of radius R the number variance is proportional to R2.

Moreover there is absolutely no rigidity in the sense of Ghosh-Peres: the
configuration outside Λ is indeed completely independent from the configuration
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inside Λ. For the same reason there is extremely good decay of correlations
(in every possible sense).

Physically speaking, one can think of the Poisson point process as a stereo-
type of what an “infinite temperature” system could look like. It represents
complete disorder and lack of interaction between the points.

B. Stationary lattices and their perturbations On the opposite end of
the spectrum, let us take for X the stationary lattice i.e. Z2 with a random
choice of the origin uniformly in [0, 1]2 (or another unimodular lattice with
origin chosen uniformly in a fundamental domain).

Thanks to the stationarization it is easy to check that the discrepancies
are exactly centered, but the number variance computation is not completely
obvious - in particular it does depend quite heavily on the shape of the region Λ.
In a disk of radius R however, one finds that the number variance is O(R), in
sharp contrast with the Poisson case (proportional to R2). It will be interesting
to keep in mind that O(R) is in fact the slowest possible growth, see [Bec87] for
a precise statement.

Regarding “rigidity” à la Ghosh-Peres, a stationary lattice is obviously num-
ber-rigid, in fact it is “fully rigid” i.e. one can completely deduce X ∩ Λ from
observing X ∩ (R2 \ Λ). Regarding correlations, there is very long-range order
and absolutely no decay.

One can add more randomness to this model by displacing each lattice point
with some random perturbation. When the perturbations are i.i.d. and have
finite first moment, then the number variance remains O(R), see [GS75].

In physical terms, lattices can be thought of as describing “ground states”
or zero-temperature systems, with a lot of order. Perturbed lattices could (at
least very unformally) correspond to small positive temperatures.

C. Zeroes of the Gaussian Entire Function We now turn to a more
truly random object. Let (an)n≥1 be a family of independent standard complex
Gaussian variables. Almost surely the random series

∑
n≥0

an√
n!z

n converges
for all z ∈ C and forms an entire function over the complex plane called the
“Gaussian Entire Function” (GEF). Its zero set is a random, infinite, locally
finite collection of points whose distribution is translation-invariant (although
that last property is not obvious).

Due to translation-invariance, discrepancies are again exactly centered.
Moreover it is known (see [FH99, SZ08]) that the number variance in a disk of
radius R is of order O(R) and thus that the zeroes of the GEF have the “best”
number variance, comparable to the case of a lattice. Moreover, they display
somewhat amusing rigidity properties: not only is the point process number-
rigid, but observing X ∩ (R2 \ Λ) allows one to also recover the center of
mass of X ∩ Λ.
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D. The Ginibre ensemble Starting with a family (ai,j)1≤i,j≤n of indepen-
dent standard complex Gaussian variables, form the associated square matrix
and consider its spectrum. It is a.s. formed of n distinct complex eigenval-
ues, whose joint distribution is known explicitely [Gin65] and admits a limit as
n → ∞, called the (infinite) Ginibre ensemble. It is a prominent member of the
family of “determinantal point processes” for which we refer to [HKPV06]: in
short, this means that the system is in some sense “integrable” and opens the
way to many exact - but possibly difficult - computations.

The Ginibre ensemble turns out to have a translation-invariant distribution
and thus exactly centered discrepancies. The number variance in large
disks grows, again, as the radius of the disk (and not the area, like Poisson).

This point process is known to also be number-rigid but compared to the
zeroes of the GEF it does not possess the extra “center of mass”-rigidity prop-
erty. Moreover this is one of the rare settings in which the two-point correlation
is known, and it exhibits a very fast decay - namely ρ2(x, y)−1 = −e−c|x−y|2

(for some c > 0).

2 The 2DOCP
The two-dimensional “one-component plasma” (also called log-gas, or Coulomb
gas, or jellium) is a Gibbs measure whose density has the following form:

dPβ
N (XN ) ∝ exp(−βFN (XN )) dXN , (2.1)

where XN = (x1, . . . , xN ) denotes a N -tuple of points, dXN is the product
Lebesgue measure, and FN (XN ) is the appropriately defined “energy” in the
“state” XN . The parameter β > 0 is called the “inverse temperature” and
the “proportional to” sign ∝ means that we need to normalize the density by
the right constant (called the partition function) in order to get a probability
density.

Here for convenience we impose that the N points be contained the disk
ΣN := D(0, N

π ) (e.g. by setting FN (XN ) = +∞ otherwise) and then define
their energy as:

FN (XN ) := 1
2

x

ΣN ×ΣN ,x ̸=y

− log |x− y|dfN (x)dfN (y), fN :=
N∑

i=1
δxi

− 1ΣN
dx.

(2.2)
The signed measure fN is the difference between a positive, purely atomic mea-
sure of mass N representing the positions of the N particles x1, . . . , xN , and
a negative uniform density on the disk ΣN (physicists speak about a “uniform
neutralizing background”). The charged system encoded by fN interacts with
itself through the two-dimensional Coulomb kernel − log which is solution to
the Poisson equation −∆(− log) = 2πδ0 and is thus the interaction potential
of two-dimensional electrostatics. Note that we remove the diagonal to avoid
point charges self-interactions, which are infinite. Let us mention two things:
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• There is a (coincidental) close link between the 2DOCP at the specific value
β = 2 and the Ginibre ensemble of random matrices described above: the
joint distribution of random eigenvalues and random particles are in fact the
same (up to a minor difference due to us choosing a “strict” confinement of
the particles within ΣN when defining the 2DOCP). This allows for exact
computations and very precise results in the β = 2 case.

• Existence of an “infinite-volume limit” i.e. a limit in law of the finite point
process defined by Pβ

N as N → ∞ is taken for granted in the physics litera-
ture (which speak of an “infinitely extended” one-component plasma see e.g.
[JLM93]) but is only mathematically proven in the special case β = 2. Avail-
able results in that direction is existence of limit points at arbitrary β > 0
(see [AS21]), and description of those limit points as actual Gibbs states.
There is an extensive literature devoted to the 2DOCP (and closely related

two-dimensional models like Riesz gases, where the logarithmic/Coulomb kernel
− log |x−y| is replaced by a power law |x−y|−s with s > 0), both on the physics
and mathematics side, see refer to the surveys [Ser18] and [Lew22] for references.
The fact that the pairwise interaction potential is long-range makes the analysis
of the 2DOCP particularly interesting for physicists and mathematicians alike.

Questions related to discrepancies (“charge fluctuations”) in classical Cou-
lomb systems like the 2DOCP have been of particular interest for physicists,
see e.g. the series of papers [MY80, Leb83, Mar88, JLM93, LWL00] devoted to
this topic. The main take-away of their studies is the following “cancellation of
charge fluctuations” statement:

For all β > 0, as R → ∞, the number variance in a large disk
of radius R is o(R2), it is even O(R), and in fact it is equivalent to
cβR for some constant cβ depending on β.

Early on, this was fairly well understood in the special case β = 2 thanks to
explicit computations.

Hyperuniformity The term “hyperuniform(ity)” has been coined in the the-
oretical chemistry literature by S. Torquato (see [TS03, Tor18] for surveys), an
alternative terminology due to J. Lebowitz is “superhomoge- neous/ity”. A sys-
tem is hyperuniform when the number variance in a large ball is asymptotically
negligible with respect to the volume of said ball. In other words, the physicists’
claim can be rephrased as the fact that a 2DOCP is hyperuniform at all positive
temperatures, and even that it is “Type I” hyperuniform (in the classification of
Torquato) i.e. that the number variance in large disks scales like the perimeter
of the disk (which we recall is the “best” possible growth).

For a Poisson point process the number variance scales exactly like the vol-
ume, so “hyperuniform” systems are those who do “better than Poisson” in that
regard. We have seen several examples in Section 1.2: stationary lattices and
their i.i.d. perturbations, the zeroes of the GEF, as well as the points of the
Ginibre ensemble. Although differing with respect to the rest of their rigidity
properties, they are all “type I” hyperuniform.
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3 JLM law & NSV theorem
3.1 The JLM law
In [JLM93], Jancovici-Lebowitz-Manificat study the behavior of discrepancies
in the 2DOCP and state that for all α > 1

2 :

P [Discrepancy of size Rα in a disk of radius R] ∼ exp(−Rφ(α)) (“JLM law”)

where the rate φ(α) > 0 is an explicit piecewise affine function of α. Note
that this implies Type I hyperuniformity for the 2DOCP and is in fact a much
more precise statement on the tail probability of “large charge fluctuations” (i.e.
fluctuations that are much larger than the predicted standard deviation, which
is of order R 1

2 ). In the sequel we will focus on the most difficult regime, which
is α ∈ ( 1

2 , 1). The argument in [JLM93] is a physical one:

1. By general properties of charged systems, any excess of charges of size Rα

within the disk DR must concentrate over a thin annulus of width Rα−1 near
the boundary of the disk.

2. This will be compensated immediately outside DR by an annulus of compa-
rable width carrying an opposite deficit of charges.

3. The free energy of such a double electrical layer can then be estimated by a
scaling argument.

Although the first step can be made mathematically rigorous (in a weaker form,
see below), it is very hard to treat thin layers with sub-microscopic (Rα−1 ≪ 1
here) length scale. The statement of [JLM93] has been checked (in the mathe-
matical literature) for β = 2 through explicit computations, see [Shi06, FL21]
but the general β > 0 case remains open.

3.2 The NSV theorem
Remarkably, although the original prediction of [JLM93] deals with Coulomb
gases, it was first verified in [NSV08] for a different model, namely the zeros
of the Gaussian Entire Function! The overall strategy developed by Nazarov-
Sodin-Volberg is surprisingly simple and can be summarized as follows:

1. Show that any discrepancy of size Rα must be located near the boundary of
the disk, say in an annulus of width ≈ 1.

2. Cut the annulus into R “rectangular” pieces of size ≈ 1 and group them
modulo M for some M ≫ 1. By the pigeonhole principle, one of the families
mod M must carry a total discrepancy of size at least Rα/M .

3. Such a family is made of R/M pieces of size 1, with two neighboring pieces
distant by ≈ M ≫ 1. One then has to show:
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(a) That the point processes induced on each piece are (approximately)
independent.

(b) That discrepancies are (approximately) centered on each piece.
(c) That the number variance on each piece is of size ≈ 1.

4. Finally, one concludes using a standard concentration inequality for sums of
independent random variables.

Step 3. and its substeps are the central part of their argument. Point 3) (a)
is surprising because the points must in fact be very much correlated at large
scale (uncorrelated systems can hardly be hyperuniform, think of a Poisson
point process) and clearly, the large distance between pieces will play a crucial
role. Point 3) (b) seems innocent, especially in view of Section 1.2 where all
the processes had discrepancies which were exactly centered, and it is in fact
easy for [NSV08] to obtain - see however the discussion below for the 2DOCP,
where it is a major roadblock. Finally, although Point 3) (c) might also seem
innocent since it amounts to saying that the number variance in a piece of size 1
is... of size 1, one should keep in mind that this small piece is part of a much
larger/infinite system which could influence its behavior in a dramatic way.

Our goal is to adapt the strategy of [NSV08] in the case of the 2DOCP
which, although it bears some resemblance with the zeroes of GEF, is still of a
very different nature.

4 Existing and missing tools for the 2DOCP
Recall the “fluctuation measure” fN :=

∑N
i=1 δxi − 1ΣN

dx introduced in (2.2).

Energy. Thanks to the pioneering analysis of Sandier-Serfaty [SS15], the
global logarithmic energy FN (XN ) is known to be of order N with overwhelming
probability. Defining the proper notion of a “local” logarithmic energy (say at
scale 1 ≤ ℓ ≤

√
N) requires some care, in particular taking the logarithmic in-

teraction of the particles in the sub-region does not lead to the “right” quantity.
The correct definition is quite lengthy and we refer to [Leb17, BBNY17, AS21],
which establish local laws stating that the local energy at every mesoscopic
scale 1 ≪ ℓ ≪

√
N and even at large enough microscopic scale ℓ ≥ C (a crucial

improvement from [AS21]) is O(ℓ2) with high probability.

Discrepancy-energy inequalities. A leading intuition in the study of sys-
tems like the 2DOCP is that:

1. Typical realizations XN have a “reasonable” energy FN (XN ).

2. In order for FN (XN ) to be “reasonable”, the signed measure fN should be
“close” to 0 i.e. the discrete measure

∑N
i=1 δxi

should “well” approximate
the uniform background 1ΣN

dx.

Exp. no VI— Hyperuniformity of the two-dimensional one-component plasma
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3. In particular, any event that implies a significant difference (a discrepancy!)
between the point charges and the Lebesgue measure on the disk should have
some kind of energy cost, and thus a quantifiable probabilistic price.

This can be verified, for instance, in the case of charge fluctuations: there are
discrepancy-energy inequalities which roughly speaking are of the form:

|Dis(X,Dℓ)|2 ≤ C × Local energy in D2ℓ (4.1)

(see [SS15, RS16, AS21] for increasingly sharp statements). On the other hand
the local laws imply that the local energy at scale ℓ is of order ℓ2 in expectation,
and one can thus deduce that the number variance in a disk is bounded by the
area (up to some multiplicative constant). It is interesting to note that getting
to this result, i.e. knowing that the 2DOCP is at least as “good” as (let alone
strictly better than) a Poisson point process in terms of number variance, already
required significant work.

Fluctuations of linear statistics - the Lipschitz case. By definition, the
discrepancy in a domain Ω can can be written as Dis(X,Ω) =

∫
1Ω(x)dfN (x)

i.e. as the so-called “linear statistics” associated to the indicator function of Ω
(which is not a smooth test function). More generally, for a given test function
φ, one can consider the corresponding linear statistics

∫
φ(x)dfN (x), which also

measures a kind of “discrepancy” between the point charges and the background
measure, as seen through the “eyes” of φ. When φ is of class C1 and compactly
supported within ΣN , it is not hard (thanks to a simple integration by parts)
to state a “linear statistics-energy” inequality of the form:

∣∣∣∣
∫
φ(x)dfN (x)

∣∣∣∣
2

≤ C × ∥φ∥2
H1 × Local energy in suppφ, (4.2)

which is reminiscent of (4.1). Such a bound on fluctuations of C1 (or Lipschitz)
test functions already appeared in [SS15].

Fluctuations of linear statistics - the smooth case. However, when φ is
sufficiently smooth (say of class C4 and compactly supported) then (4.2) is in
fact off by the “energy” term, indeed one can prove ([LS18, BBNY19, Ser23])
that the linear statistics is then of order 1, with a standard deviation given by the
H1 norm of the test function up to some multiplicative constant depending on
β. This remarkable property (sometimes presented as a “central limit theorem
without normalization”) is a sign of strong rigidity within the system at all
temperatures.

Interestingly, this last result can be used to prove the first step of the NSV
strategy described in Section 3.2: indeed, if the excess of charges is spread
uniformly in the disk instead of being localized near the boundary, then it is
not hard to construct some smooth test function φ which “detects” this excess of
charges, and to which one can apply the precise controls on smooth fluctuations
(if however the excess (or default) of charges within the disk is located in a
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thin strip near the boundary, then essentially it can only be detected by the
indicator function or another test function with sharp cut-off, for which the
results of [LS18, BBNY19, Ser23] are irrelevant).

Missing tools. Since the first step of the strategy can be reduced to a matter
of smooth linear statistics, and the second step is simply an application of the
pigeonhole principle, it remains to implement the three points forming the third
and main step of Section 3.2, which all require a new viewpoint.

5 Approximate conditional independence
It is of course not true that the restrictions of the 2DOCP to two regions A,B in
ΣN become independent when A and B are disjoint or even very distant. Clearly
the Gibbs measure Pβ

N (2.1) couples A and B through the energy term FN which
contains the interaction between (the sub-systems in) A and B, namely:

x

A×B

− log |x− y|dfN (x)dfN (y). (5.1)

Let us take A and B as two disks of radius S. When the distance dist(A,B)
between A and B is much larger than the characteristic size S of A and B, one
can perform the following Taylor’s expansion for x ∈ A, y ∈ B:

− log |x− y| = − log dist(A,B) + 1
dist(A,B) × O(S),

and insert this into (5.1) to get:
x

A×B

− log |x− y|dfN (x)dfN (y) = − log dist(A,B) × Dis(X, A) × Dis(X, B)

+ 1
dist(A,B) × O(S) × O(S2) × O(S2), (5.2)

where we have used the fact that the total variation of fN within A and B, which
is bounded by the number of points (positive part) plus the surface (negative
background), is O(S2) - this requires to control the typical number of points
down to the scale S, which is indeed guaranteed by the local laws mentioned at
the beginning of Section 4.

The take-away message from (5.2) is that the interaction between regions A
and B can be written as a first part that depends only on the relative position
of A and B and the number of points in both zones, but not on the precise
arrangement of the points within them plus an error term that can be made
small if dist(A,B) is sufficiently large compared to the size S of A and B. So
one can hope that: after conditioning on the number of points in A and B, the
regions become approximately independent. This idea relies simply on a Taylor’s
expansion but does not seem to have appeared previously.

Exp. no VI— Hyperuniformity of the two-dimensional one-component plasma
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In fact, the precise statement of this conditional independence leads one to
study the restriction of the 2DOCP to certain regions after conditioning not
only on the number of points in each region, but also on the state of the system
outside all the regions under consideration: in the previous example one would
condition on |X∩A|, |X∩B| and on the exterior configuration X∩(ΣN \(A∪B)).
This naturally leads to an extension of the definition (2.1) of the Gibbs measure
in order to consider generalized 2DOCP’s with two modifications:

1. The number of points is still fixed, but does not exactly coincide with the
area of the region (because although by a priori controls on the discrepancy
we know that |Dis(X, A)| will typically not be very large, we cannot ensure
that |X ∩A| will be exactly equal to |A|).

2. On top of the logarithmic interactions between the points, the energy contains
the effect of a one-body potential V which is harmonic but may be singular
near the boundary of the support. This potential reflects the influence of the
exterior configuration.

Such generalized 2DOCP’s have appeared previously in the literature under the
name of “conditional” or “local” measures, see e.g. [BBNY17]. Combining their
analysis with the techniques of [AS21] we are able to prove that those systems
basically retain all the good properties known for the standard 2DOCP, at least
when looked at in the bulk i.e. sufficiently far from the boundary (where the
external potential V is not well controlled).

The approximate conditional independence together with the study of gen-
eralized 2DOCP’s as described above allow to treat points (a) and (c) of the
strategy’s third step. The last property that remains to be checked might seem
the simplest one, as it is “only” a matter of estimating an expectation in order
to show that discrepancies are almost centered.

6 Centeredness of fluctuations and approximate
translation-invariance

6.1 Origin of the problem
First, let us explain where this needs come from. The very last step in the
strategy of NSV consists in using the following standard concentration inequal-
ity (Hoeffding’s inequality): if X1, . . . , Xn are independent centered random
variables bounded by b then:

P[|
n∑

i=1
Xi| ≥ t] ≤ exp

(
− t2

2nb2

)
.

In particular as soon as t ≫ √
nb this yields a small probability. Now, if for

each i we have some doubt δ about the expectation of Xi, these errors sum up
and we need to take t larger than max(

√
nb, nδ) before getting an interesting
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estimate. In our computation, n corresponds to the radius of the disk for which
we are controlling the number variance and the Xi’s are discrepancies on small
pieces of size ≈ 1, with b of order 1 thanks to the local laws. We see that
ideally, one would get an interesting probability estimate as soon as t (the global
discrepancy carried by the smaller pieces) exceeds

√
n - which corresponds the

threshold posited by physicists - but unfortunately our uncertainties about the
centeredess of discrepancies within each piece will add up and might compromise
the entire strategy by raising the threshold to some quantity proportional to n.

Now that we understand why it is important to control the expectation of
discrepancies, let us explain why it might not be easy. All the examples reviewed
in Section 1.2 had their discrepancies exactly centered for one simple reason:
they are all infinite, translation-invariant point processes. The property of being
translation-invariant implies that for additive quantities like (the expectation
of) the number of points in domains one can compare small-scale properties
to (the average of) large-scale ones and in particular the intensity assumption
(1.1) (which is by definition an infinite-volume limit) translates into the fixed
lengthscale identity 1

|DR|E[|X ∩ DR|] = 1 (for any R > 0).
However the “conditional measures” introduced in the previous section are

finite systems and cannot be perfectly translation-invariant because of the pres-
ence of boundaries, one might however hope that some translation-invariance
remains true in the bulk. This yields the question of how to prove (quasi)-
invariance properties for Gibbs measures.

6.2 Continuous symmetries in spin systems
Such questions arise naturally in the slightly different context of so-called spin
systems with continuous symmetries. The typical example is the situation where
the spins (indexed by the lattice Z2) are angles in S1 (the unit circle) and the
interaction energy of a spin configuration is invariant under rotation of all the
spins by a same angle. It is then well-known (see e.g. [DS75, FP81]) that
“in dimension 2, continuous symmetries cannot be broken” (of course there are
minimal assumptions to put for this theorem, known as “Mermin-Wagner” to
hold, in particular the interactions must be sufficiently short-ranged), which can
mean two things:

1. The infinite-volume Gibbs measures (“Gibbs states” in the sense of the
Dobrushin-Lanford-Ruelle (DLR) formalism) are all invariant under the con-
tinuous symmetry.

2. The finite-volume Gibbs measures with arbitrary boundary conditions are
“almost invariant” under the continuous symmetry.

While the first conclusion is unambiguous, the second one requires a speficic,
model-dependent quantified statement.

The classical way to prove the first statement is to construct for an arbitrary
angle θ0 and for each L ≥ 1, a “spin wave” or “localized rotation” θ : Z2 → S1

such that:
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• θ(x) = θ0 if |x| ≤ L

• θ(x) = 0 if |x| is large enough,

in such a way that θ has a bounded energy cost i.e. that rotating the spin
located at x by θ(x) (for x ∈ Z2) changes the interaction energy of the entire
spin configuration by some constant bounded uniformly in L. This is enough to
prove invariance by rotation of all solutions of the DLR equations.

Morally speaking, one might wonder how showing that something (here, the
energy cost) is bounded might yield to the conclusion that two things are equal.
This is due to the structure of extremal Gibbs states (every Gibbs state can be
decomposed as a mixture of extremal ones and it is enough to prove invariance
of those ones), which are mutually singular. The following observation is a good
toy model of the argument: if µ and ν are two Dirac measures and if we prove
that the Radon-Nikodym derivative dµ

dν ≤ C (“a certain quantity is bounded”)
then in fact µ = ν (“a certain equality holds”).

Bounded versus small energy cost When trying to prove almost-invariance
of finite-volume Gibbs measures however, making a spin wave construction with
bounded energy cost yields almost no information and a quick computation
reveals that in order to derive any sort of invariance, one would need to build
localized rotations which have a small energy cost: o(1) and not simply O(1).
This surprising difference in the two approaches (infinite or finite-volume) is
noted in [Sim14] which mysteriously mentions in passing (as an empirical fact)
that in all known cases, when one can construct spin waves with bounded cost
one can also construct spin waves with vanishing energy cost.

The role of the H1 norm One informal way to understand B. Simon’s
remark is to observe that that in “natural” cases the energy cost of a localized
rotation θ (or more precisely of the average effect of two localized rotations θ
and −θ, which is enough to consider thanks to a useful trick) is given by a
quantity of the type

∫
R2 |Dθ(x)|2dx (here for convenience let us assume we have

extended θ as a smooth function on R2 instead of just looking at it on Z2).
In dimension 2, since the H1 (sometimes denoted by Ẇ 1,2) norm of θ is scale-

invariant it is not hard to construct spin waves with a cost bounded uniformly
in L by simply rescaling a given function. But in fact, since in dimension 2 the
Sobolev space Ẇ 1,2 does not embed into L∞, it is also possible to find functions
with arbitrarily small H1 norm and which are yet constant (and non zero) over
a large box. Note however that those functions have a very slow decay, and in
order to make the energy cost smaller than ε requires to “dampen” the function
over a domain of diameter e1/ε.

6.3 Almost translation-invariance
The problem of translation-invariance in particle systems is closely related to
rotation-invariance in spin systems, in fact the same method of proof can be
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employed after replacing “localized rotations” by “localized translations” as de-
scribed in [FP81, FP86, Geo99] - in which case one seeks to construct ψ : R2 →
R2 such that:

• ψ(x) = ψ0 if |x| ≤ L,

• ψ(x) = 0 if |x| is large enough,

in such a way that translating the particle located at x by ψ(x) (for x ∈ R2)
changes the interaction energy of the entire point configuration by some constant
bounded uniformly in L. Note that in this situation one should also require that
the map x 7→ x+ψ(x) has Jacobian equal to 1 (this came for free with localized
rotations). This would be enough to show that infinite-volume 2DOCP’s are
translation-invariant, but does not yield anything useful in finite volume.

To get some approximate translation-invariance, one must rely on the obser-
vation of B. Simon and find a localized translation with an energy cost that is
small, not merely bounded. To do that, as explained above, it is enough to show
that the dominant term in the energy cost of volume-preserving perturbations of
the identity map (x 7→ x+ψ(x)) applied to all particles is given by the Sobolev
Ẇ 1,2 norm of ψ, which requires a careful revisit of the heavy computations of
[Ser23]. One can then use localized translations that are spread on a sufficiently
large region - of size e1/ε in order to get an energy error of size ε, which in
means that conversely, in a disk of radius T , one can hope to have approximate
translation-invariance near the origin with an “error” of size 1

log T (which has a
slow decay with respect to T ).

Using this approximate translation-invariance, one can estimate expecta-
tions of discrepancies and get something of the type E[Dis(X,Dr)] = o(r) with
a quantitative but very limited gain compared to the linear bound that one
gets from a priori controlling the second moment. This is enough for our pur-
poses, although one could hope to get a much better gain, at least for high
enough temperature (in the hypothetical “liquid” phase one would expect a lot
of translation-invariance).

7 Conclusion
The result we are able to get is a statement of hyperuniformity in the bulk of the
2DOCP, giving a quantitative bound on the number variance which is negligible
with respect to the volume.

Theorem 1. Let δ > 0 be fixed. For all N and R large enough (both depending
on β and δ), for all x in ΣN such that x is “in the bulk” in the following sense:

dist(D(x,R), ∂ΣN ) ≥ δ
√
N,

we have in the disk D(x,R) of center x and radius R:

Pβ
N

({
|Dis(XN ,D(x,R))| ≥ R(logR)−0.3})

≤ exp
(
− log1.5 R

)
.
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Since good exponential tails for Dis at values higher than R are already
known (see e.g. [AS21, Thm 1]), this new sub-algebraic tail valid for values of
the discrepancy between R log−0.3 R and R imply that:

Var[Dis(XN ,D(x,R))] ≤ Eβ
N

[
Dis2(XN ,D(x,R))

]
= O

(
R2

log0.6 R

)
= o(R2),

so the 2DOCP is thus indeed hyperuniform. Recall that the full physical pre-
diction says not only that the number variance is negligible with respect to the
area of the disk, but that it should even be comparable to the perimeter (O(R)
and not only o(R2)). In conclusion, hyperuniformity does hold at all tempera-
tures, however our upper bound on the number variance remains far from the
conjectured sharp estimate.
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[LS18] Thomas Leblé and Sylvia Serfaty. Fluctuations of two dimensional
Coulomb gases. Geom. Funct. Anal., 28(2):443–508, 2018.

[LWL00] D. Levesque, J.-J. Weis, and Joel Lebowitz. Charge fluctuations
in the two-dimensional one-component plasma. J. Statist. Phys.,
100(1):209–222, 2000.

[Mar88] Ph A Martin. Sum rules in charged fluids. Rev. Modern Phys.,
60(4):1075, 1988.

Exp. no VI— Hyperuniformity of the two-dimensional one-component plasma

VI–15



[MY80] Ph. A. Martin and T. Yalcin. The charge fluctuations in classical
coulomb systems. J. Statist. Phys., 22(4):435–463, 1980.

[NSV08] Fedor Nazarov, Mikhail Sodin, and Alexander Volberg. The
Jancovici–Lebowitz–Manificat law for large fluctuations of random
complex zeroes. Comm. Math. Phys., 284(3):833–865, 2008.

[RS16] Nicolas Rougerie and Sylvia Serfaty. Higher-dimensional coulomb
gases and renormalized energy functionals. Comm. Pure Appl.
Math., 69(3):519–605, 2016.

[Ser18] Sylvia Serfaty. Systems of points with coulomb interactions. Eur.
Math. Soc. Newsl, 110:16–21, 2018.

[Ser23] Sylvia Serfaty. Gaussian fluctuations and free energy expansion for
Coulomb gases at any temperature. Ann. Inst. H. Poincaré Probab.
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