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UNIVERSALITY RESULTS FOR A CLASS OF NONLINEAR
WAVE EQUATIONS AND THEIR GIBBS MEASURES

CHENMIN SUN, NIKOLAY TZVETKOV, AND WEIJUN XU

This text is based on a talk given by the second author on April 5, 2022 at the
seminar Laurent Schwartz. We thank the organizers for the invitation to present
our results.

1. The microscopic model

For N ≥ 1, consider as a microscopic model the weakly interacting waves of the
type

(1.1)

{
∂2t ũ+ |∇|2αũ+N−θΠNV

′(ũ) = 0, (t, x) ∈ R×T2
N ,

ũ(0, ·) = ϕ̃, (∂tũ)(0, ·) = ψ̃,

where T2
N = (R/2πNZ)2 is the two dimensional torus of side length 2πN , V is the

even polynomial

V (u) =
m∑

j=0

aju
2j, m ≥ 2, am > 0,

satisfying certain structural conditions specified below, and ΠN is the projection
operator such that

Π̂Nf(k) = 1|k|≤N f̂(k).

The differential operator |∇|γ acts on functions on torus of side length L as

|̂∇|γf(k) :=
∣∣∣2πk
L

∣∣∣
γ

f̂(k).

Here in the microscopic model, we take γ = 2α and L = 2πN . Without the term
N−θΠNV

′(ũ) in
∂2t ũ+ |∇|2αũ+N−θΠNV

′(ũ) = 0

we have N linear waves (each Fourier coefficient) oscillating independently. Our goal
is to try to understand how the weak nonlinear interaction N−θΠNV

′(ũ) modifies
the free evolution for N ≫ 1.

2. On the nature of the nonlinear interaction

The presence of ΠN in

∂2t u+ |∇|2αu+N−θΠNV
′(u) = 0, (t, x) ∈ R×T2

N ,

is essential for the existence of the dynamics. Indeed, consider

(2.1) ∂2t u+ |∇|2αu+N−θu2k+1 = 0, (t, x) ∈ R×T2
N .
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Then for k > α/(1− α), (2.1) is an energy supercritical problem and it is not clear
at all that there is a well-defined flow, even for smooth data (see for example the
recent work [11]). More precisely, the energy controls the Hα norm while the scaling
invariant norm is H1−α/k. Then for α < 1,

1− α

k
> α ⇐⇒ k >

α

1− α
.

3. The initial data

The initial data ϕ̃ and ψ̃ in (1.1) are two random functions given by

ϕ̃(x) =
1

2πN1−α

∑

|k|≤N

gk√
1 + |k|2α

eik·x/N , ψ̃(x) =
1

2πN

∑

|k|≤N

hk e
ik·x/N ,

where {gk} and {hk} are standard complex Gaussians with g−k = gk, h−k = hk and
otherwise independent. We omit their dependence on N to keep notations simple
and consistent (omitting the N in notation for microscopic quantities). This type of
initial condition is natural since the Gaussian measure it induces is invariant under
the perturbed linear evolution above (with the differential operator |∇|2α replaced
by 1

N2α + |∇|2α and without nonlinear interaction).

The initial data is, very roughly speaking, of the type

1

2πN

∑

|k|≤N

ρ(k/N)gk(ω)e
ik·x/N

for suitable function ρ : R2 → R. In our case, ρ(x) = 1/⟨x⟩α for the initial position,
and ρ(x) ≡ 1 for the initial velocity. Although natural from the invariance of the
perturbed linear dynamics, we should also note that our choice is also very restrictive
relating to the support of the corresponding Gibbs measure.

4. Assumptions on the potential

Note that ϕ̃ has a stationary Gaussian distribution with ϕ̃(x) ∼ N (0, σ2
N), where

(4.1) σ2
N =

1

4π2N2(1−α)

∑

|k|≤N

1

1 + |k|2α =
1

4π2

∫

|ξ|≤1

1

|ξ|2αdξ
︸ ︷︷ ︸

σ2

+ O(N−2(1−α)).

Let σ2 be defined as above, µ̃ be the law of N (0, σ2), and

⟨V ⟩(z) :=
∫

R

V (z + y)µ̃(dy)

be the average of V under µ̃. Our main assumption on V is the criticality and
positivity of its averaged version ⟨V ⟩.
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Assumption 4.1. V is an even polynomial of degree 2m ≥ 4 with the form

V (z) =
2m∑

j=0

ajz
2j.

Furthermore, we assume

(1) z = 0 is a bifurcation point of ⟨V ⟩ in the sense that ⟨V ⟩′′(0) = 0.

(2) ⟨V ⟩(z)− ⟨V ⟩(0) > 0 for all z ̸= 0.

The averaged version ⟨V ⟩ has the expression

⟨V ⟩(z) =
m∑

j=0

ajz
2j

with

(4.2) aj =
1

(2j)!
E
[
V (2j)

(
N (0, σ2)

)]
=

1

(2j)!

m∑

k=j

(2k)!

(2k − 2j)!!
· ak · σ2(k−j).

Hence, Condition (1) above is equivalent to say that a1 = 0. Since the renor-
malisation term in the wave dynamics and the measures are constant multiples of
a1N

2(1−α)uN and a1N
2(1−α)ϕ⋄2

N respectively, Condition (1) guarantees that the di-
vergent parts in various terms are canceled out automatically, and there is no need
to subtract the renormalisation by hand. With Condition (1), Condition (2) is then
equivalent to the following positivity condition:

m∑

j=2

ajz
2(j−2) > 0, ∀z ∈ R.(4.3)

Exemple 4.2. If we fix a2 > 0, . . . , am > 0, we can find a1 < 0 such that our
assumptions on V are satisfied. For example

V (z) = z6 − 45σ2z2

satisfies the assumptions. We can also find V ≥ 0 such that our assumptions are
satisfied.

5. The macroscopic model

Our aim is to investigate the influence of the microscopic weak non-linear inter-
action to the macroscopic behaviour of ũ under the above assumption on V . For
T2 = (R/2πZ)2, define the macroscopic process uN on R×T2 by

uN(t, x) := N1−αũ(Nαt, Nx), (t, x) ∈ R×T2.

It satisfies the equation

(5.1) ∂2t uN + |∇|2αuN +N1+α−θΠNV
′(uN/N

1−α) = 0, (t, x) ∈ R×T2
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with initial data
(5.2)

(uN , ∂tuN)(0, x) = (ϕN(x), ψN(x)) =
1

2π

( ∑

|k|≤N

gk√
1 + |k|2α

eik·x,
∑

|k|≤N

hke
ik·x

)
.

In order for uN to converge to a cubic equation, one necessarily sets θ = 4α − 2
and hence 1 + α − θ = 3(1− α). Therefore we expect that under such a scaling at
macroscopic level the dynamics is governed by a ”cubic equation” (even if there is
no cubic term in the polynomial V ′ !).
For α ∈ (3/4, 1), let µ be the Gaussian measure on D′(T2) (the space of distri-

butions on T2) with covariance operator (1 + |∇|2α)−1, and µ′ be the white noise
measure on T2. Equivalently, the Gaussian measures µ and µ′ are induced by the
random fields

ϕ =
1

2π

∑

k∈Z2

gk√
1 + |k|2α

eik·x, ψ =
1

2π

∑

k∈Z2

hke
ik·x.

Let µN := µ◦Π−1
N and µ′

N = µ′◦Π−1
N be the marginals of µ and µ′ on frequencies up

to N . Hence, the initial data of the macroscopic wave dynamics (5.1) are distributed
according to µN ⊗ µ′

N . Let σ̃2
N be the variance of ϕ under µN , which is invariant

under translations and hence σ̃2
N does not depend on the spatial variable x. In fact,

a direct computation shows

σ̃2
N := Eµ|ΠNϕ|2 =

1

4π2

∑

k∈Z2,|k|≤N

1

1 + |k|2α = (σ2 + errN)︸ ︷︷ ︸
=:σ2

N

·N2(1−α),(5.3)

where σ2
N and

(5.4) σ2 =
1

4π2

∫

|ξ|≤1

1

|ξ|2αdξ

are as defined in (4.1), and errN = O(N−2(1−α)) as N → +∞.

Now, let V be an even polynomial satisfying Assumption 4.1. For every N ∈ N,
let

(5.5) VN(φ) = N4(1−α)V (φ/N1−α),

and we have

(5.6) VN(φ) =
m∑

j=1

aj,NN
−(2j−4)(1−α)H2j(φ; σ̃

2
N),

where Hk(·, σ2) is the k-th Hermite polynomial with leading coefficient 1 and vari-
ance σ2. Recall that the Hermite polynomials are defined by

etx−
1
2
σt2 =

∞∑

k=0

tk

k!
Hk(x;σ).

In particular

H1(x;σ) = x, H2(x;σ) = x2 − σ, H3(x;σ) = x3 − 3σx.
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The coefficients aj,N can be explicitly computed as

(5.7) aj,N =
1

(2j)!
E
[
V (2j)

(
N (0, σ2

N)
)]
.

For every j, we have aj,N → aj as N → +∞, where aj are as given in (4.2).
Furthermore, the following slightly more delicate relation holds.

Proposition 5.1. Assume that α ∈
(
1/2, 1

)
. There exists an absolute constant

λ0 ∈ R, such that as N → ∞,

a1,N = a1 + λ0N
−2(1−α) +O(N−1) +O(N−4(1−α)).

6. Wave dynamics

Our main result concerns the behavior of the macroscopic wave-dynamics as
N → ∞.

Theorem 6.1. Suppose that α ∈ (8/9, 1). Let σ < α−1 and suppose that V satisfies
Assumption 4.1 with λ := 4a2 > 0. Let uN be the solution of

∂2t uN + |∇|2αuN +ΠNV
′
N(uN) = 0,

with initial data

(6.1) (uN , ∂tuN)|t=0 =
1

2π

∑

|k|≤N

( gk(ω)√
1 + |k|2α

eik·x, hk(ω) e
ik·x

)
.

Then solutions of (with λ0 ∈ R given in Proposition 5.1)

∂2t vN + |∇|2αvN + 2λ0vN + λΠN((vN)
3 − 3σ̃2

NvN) = 0

with initial data (6.1) converge almost surely in the sense of distribution on R×T2,
as N → ∞ and satisfy

lim
N→∞

∥uN − vN∥C([−T,T ],Hσ(T2)) = 0, ∀T > 0.

In [13], we have a more detailed convergence statement by decomposing uN (and
also vN) into a random term with low regularity and a smoother contribution. The
latter converges in positive Sobolev norms.

We emphasize that our range of α is independent of the degree 2m of the po-
tential V . Indeed, the Cauchy problem (7.3) below without the negative powers
of N in higher nonlinearities in V is highly supercritical. For large m, this is even
supercritical with respect to the probabilistic scaling, a notion introduced in [3, 4].
What saves us here is the truncation ΠN in frequency space and the negative power
of N in front of the high-power nonlinearity. The same situation appears in Hairer-
Quastel [8] for the KPZ equation (though in a different setup where the problem is
the singularity of the driving noise instead of the initial data).
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The theorem still holds true if the sharp cutoff in the truncation is replaced by a
smoother cutoff with a sufficiently fast decay smooth function. The constant λ in
the final statement then will depend on the actual cutoff function.

7. The Gibbs measures

In order to prove Theorem 6.1, we re-write the macroscopic model (5.1) as

(7.1) ∂2t uN + (1 + |∇|2α)uN +ΠN

(
V ′
N(uN)− uN

)
= 0,

still with initial data (5.2). We add a mass term in the linear part in order to control
the free evolution of the zero-th Fourier mode, and modified the nonlinear term to
compensate the change. In fact, without the mass term, the zero-th mode will grow
in time under the linear evolution. Let

ṼN(φ) := VN(φ)−
1

2

(
φ2 − σ̃2

N

)
,

and let νN be the probability measure given by

(7.2) νN(dϕ) =
1

ZN

e−
∫
T2 ṼN (ϕ)dxµN(dϕ).

The measure νN is well defined as long as am > 0, and νN ⊗ µ′
N is invariant under

the dynamics (7.1). If λ := a2 > 0, then the measure

ν(dϕ) =
1

Z e
−λ

∫
T2 ϕ⋄4dx+ 1

2

∫
T2 ϕ⋄2dxµ(dϕ)

is also well-defined, where ϕ⋄k denotes the k-th Wick power of ϕ with respect to the
Gaussian structure induced by µ. The measure ν is known as the fractional ϕ4

2 with
exponent α.

Note that the measure ν has an additional quadratic term on the exponential with
the opposite sign compared to the usual fractional ϕ4

2. This is because we define
the Gaussian measure µ to have covariance (1 + |∇|2α)−1. Indeed, the measure ν is
the same with the quadratic term removed if the reference Gaussian measure has
covariance |∇|−2α and 0-mode being a N (0, 1) random variable independent of all
other modes.

Recall that µ′ is the white noise measure on T2. We define the measures µ⃗, ν⃗N
and ν⃗ by

µ⃗ := µ⊗ µ′, ν⃗N := νN ⊗ µ′
N , ν⃗ := ν ⊗ µ′.

More precisely, writing ϕ⃗ = (ϕ, ϕ′), we have

ν⃗N(dϕ⃗) = νN(dϕ)µ
′
N(dϕ

′) = Z−1
N e−

∫
T2 ṼN (ϕ)dx µN(dϕ)µ

′
N(dϕ

′)︸ ︷︷ ︸
µ⃗N (dϕ⃗)

,

and
ν⃗(dϕ⃗) = ν(dϕ)µ′(dϕ′) = Z−1e−λ

∫
T2 ϕ⋄4dx µ(dϕ)µ′(dϕ′)︸ ︷︷ ︸

µ⃗(dϕ⃗)

,
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where the values of ZN and Z are the same as before. The equation (7.1) can be
written as a Hamiltonian system for u⃗N := (uN , ∂tuN) as

(7.3) ∂t

(
uN
∂tuN

)
=

(
0 1
−1 0

)
∂EN

∂(uN , ∂tuN)
,

where the Hamiltonian is given by

EN(f, g) =
1

2

(
⟨|∇|2αf, f⟩L2 + ⟨g, g⟩L2

)
+

∫

T2

VN(ΠNf)dx.

For every N , the probability measure ν⃗N is invariant under the above Hamiltonian
dynamics. Theorem 7.1 below implies that ν⃗N ⊗ µ⊥

N ⊗ (µ′
N)

⊥ converges to ν⃗ in the
sense that the density with respect to µ⃗ converges in Lp(µ⃗) for every p ≥ 1. The
measures µ⃗ and ν⃗ are supported on

H−(1−α)9(T2) := H−(1−α)9(T2)×H−19(T2),

where

Hγ9 :=
⋂

ε>0

Hγ−ε.

The invariance of νN ⊗ µ′
N under the dynamics (7.1) is an essential ingredient in

the proof of Theorem 6.1. In addition, convergence of the measures itself may be of
independent interest.

7.1. Convergence of the measures. We now state our result on the convergence
of the Gibbs measures. For convenience, we introduce another measure νN by

νN(dϕ) := νN ⊗ µ⊥
N =

1

ZN

e−
∫
T2 ṼN (ΠNϕ)dxµ(dϕ),

where the normalization constant ZN is the same as the one in (7.2). For every
p ≥ 1, define

Z(p)
N := Eµ

[
e−p

∫
T2 ṼN (ΠNϕ)dx

]
.

Then ZN = Z(1)
N . We have the following statement.

Theorem 7.1. Let α ∈ (3
4
, 1). Suppose that V verifies Assumption 4.1. Then for

every p ≥ 1, we have

sup
N

| logZ(p)
N | < +∞

Furthermore, λ := a2 > 0, and

Eµ

∣∣∣∣e−
∫
T2 ṼN (ΠNϕ)dx − e−λ

∫
T2 ϕ⋄4dx+ 1

2

∫
T2 ϕ⋄2dx

∣∣∣∣
p

→ 0

for every p ≥ 1. Hence, νN converges to the fractional ϕ4
2 measure ν in the sense

that the densities with respect to µ converge in Lp(µ).
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The restriction α > 3/4 is natural in the sense that in this range, one can define
the ϕ4 measure ν by an absolutely continuous density with respect to the Gaussian
measure µ. The fourth Wick power ϕ⋄4 fails to exist under µ when α = 3/4, in
which case one expects to end up with a measure (after further renormalization)
that is mutually singular with respect to µ.

The next proposition says that (4.3) is actually almost necessary for the main
theorem.

Proposition 7.2. If there exists θ ∈ R such that
∑m

j=1 a2θ
2(j−2) < 0, then there

exists c > 0 such that logZN > cN4(1−α) for all N ∈ N. As a consequence, the
densities dν̄N/dµ do not converge in L1(µ).

8. Comparison with parabolic equations and other dispersive models

This type of weak universality was first studied by Hairer-Quastel ([8]) in deriving
the KPZ equation from a large class of microscopic growth models. It has later been
extended in various directions in the setting of parabolic singular stochastic PDEs
([10, 9, 12, 6, 5]). A key feature in this type of problem is that every term in the
expansion of the nonlinearity has the same size — and hence the constant λ of this
limiting equation depends on the whole nonlinearity rather than the naive guess of
the corresponding power only. As far as we know, our Theorem 6.1 is the first one
for dispersive models fitting in this situation.

Technically, one difference between dispersive and parabolic equations is the lack
of L∞ based estimates in the dispersive setting. Hence, the heuristic reasoning
that negative powers of N balance out high powers of singular objects needs more
involved justification with the help of dispersive tools. A second technical differ-
ence lies in the globalization argument. In the parabolic setting, the global-in-time
convergence follows from the global well-posedness of the limiting equation and sta-
bility. However in the current dispersive setting, even though the limiting equation
is globally well-posed, the stability properties are not good enough here, and we
need to make an essential use of invariant measure to get global convergence.

Note that our techniques can be used to extend the weak universality result of
Gubinelli-Koch-Oh [7] for the 2D stochastic nonlinear wave equation to the sto-
chastic nonlinear fractional wave equation with space-time white noise, formally
written as

∂2t u+ |∇|2αu+ ∂tu+ λu⋄3 = ξ, (t, x) ∈ R+ ×T2

when α > 8/9. The weak universality result of Gubinelli-Koch-Oh is a consequence
of the almost sure global well-posedness for the two-dimensional nonlinear wave
equation (α = 1) with any order nonlinearity, while for the fractional wave equation
with α < 1, the situation is radically different.
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9. Some ideas behind the proof

The invariance of νN ⊗ µ′
N under the dynamics (7.1) is used in two different

ways. The first one is that it gives key a priori bounds for truncated dynamics (for
fixed N). Second, the convergence of the invariant measures to a limiting measure
(as stated in Theorem 7.1) and the invariance of the limiting measure under the
limiting dynamics allows us to pass from local to global in time convergence. An-
other key component of our argument is the use of dispersive estimates giving L2

tL
∞
x

local bounds.

Let us be slightly more precise. We have that for any δ > 0

∥∥ ∑

|k|≤N

gk(ω)

⟨k⟩α eik·x
∥∥
L∞
x
≤ CδN

1−α+δ

in a set of residual probability ≲ exp(−N θ) for some θ > 0. As in the work by
Bourgain-Bulut [1] thanks to invariant measure considerations, we can propagate
this information to the full solution uN .

This is unfortunately not sufficient to pass into the limit in terms like

u3N
(
N−(1−α)uN

)2k+1

for k ≫ 1 because of small losses of power of N in N−(1−α)uN .

We can overcome this difficulty by using dispersive estimates. More precisely,
we can write

u3N
(
N−(1−α)uN

)2k+1
= N−(1−α)u4N

(
N−(1−α)uN

)2k

and exploit the L2
tL

∞
x control coming from Strichartz estimates. This leads to local

in time convergence.

The global in time convergence crucially relies on the a priori bounds on the
global cubic dynamics. These bounds are again relying on invariant measure con-
siderations but this time for the limit dynamics. This essentially explains the basic
idea behind the proof.

Let is also mention that as in [1] and [2] in the convergence proof we define suitable
quantities x(t) satisfying inequalities of type

ẋN(t) ≤ Cδ(log(N))δxN(t),

i.e. we allow a slow semi-group growth of order exp
(
(log(N))δ

)
, δ < 1. This is

compensated by the convergence of xN(0) which is of order N−θ for some θ > 0.
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10. Perspectives

The method we use is quite general and we expect that it can be extended to
other dispersive models. In this context, the Benjamin-Ono equation seems a chal-
lenging case.

It would be interesting to obtain triviality results when the assumptions on V are
not satisfied. The critical case seems particularly challenging.

It would be interesting to extend our results to more general initial data.
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