The present article is a brief summary of the paper [27], which established new Carleman and observability estimates for a general class of linear wave equations. The main features of these estimates are that (a) they apply to a fully general class of time-dependent domains, with timelike moving boundaries, (b) they apply to linear wave equations in any spatial dimension and with general time-dependent lower-order coefficients, and (c) they allow for smaller time-dependent observation regions than previously obtained from existing Carleman estimate methods. In particular, the results of [27] imply exact controllability for general linear waves, again in settings of time-dependent domains and regions of control.
@article{SLSEDP_2018-2019____A11_0, author = {Arick Shao}, title = {On controllability of waves and {geometric~Carleman~estimates}}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:11}, pages = {1--14}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2018-2019}, doi = {10.5802/slsedp.134}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.134/} }
TY - JOUR AU - Arick Shao TI - On controllability of waves and geometric Carleman estimates JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:11 PY - 2018-2019 SP - 1 EP - 14 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.134/ DO - 10.5802/slsedp.134 LA - en ID - SLSEDP_2018-2019____A11_0 ER -
%0 Journal Article %A Arick Shao %T On controllability of waves and geometric Carleman estimates %J Séminaire Laurent Schwartz — EDP et applications %Z talk:11 %D 2018-2019 %P 1-14 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.134/ %R 10.5802/slsedp.134 %G en %F SLSEDP_2018-2019____A11_0
Arick Shao. On controllability of waves and geometric Carleman estimates. Séminaire Laurent Schwartz — EDP et applications (2018-2019), Talk no. 11, 14 p. doi : 10.5802/slsedp.134. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.134/
[1] S. Alexakis, V. Schlue, and A. Shao, Unique continuation from infinity for linear waves, Adv. Math. 286 (2016), 481–544. | DOI | MR | Zbl
[2] S. Alexakis and A. Shao, Global uniqueness theorems for linear and nonlinear waves, J. Func. Anal. 269 (2015), no. 11, 3458–3499. | DOI | MR | Zbl
[3] —, On the profile of energy concentration at blow-up points for subconformal focusing nonlinear waves., Trans. Amer. Math. Soc. 369 (2017), 5525–5542. | DOI | MR | Zbl
[4] S. A. Avdonin and S. A. Ivanov, Families of exponentials. the method of moments in controllability problems for distributed parameter systems, Cambridge Univ. Press, 1995. | Zbl
[5] C. Bardos and G. Chen, Control and stabilization for the wave equation, part III: Domain with moving boundary, SIAM J. Cont. Optim. 19 (1981), no. 1, 123–138. | DOI | Zbl
[6] C. Bardos, G. Lebeau, and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary, SIAM J. Control Optim. 30 (1992), 1024–1065. | DOI | MR | Zbl
[7] L. Baudouin, M. de Buhan, and S. Ervedoza, Global Carleman estimates for waves and applications, Comm. Partial Differential Equations 38 (2013), no. 5, 823–859. | DOI | MR | Zbl
[8] N. Burq, Contrôle de l’équation des ondes dans des ouverts peu réguliers, Asymptot. Anal. 14 (1997), no. 2, 157–191. | DOI | Zbl
[9] L. Cui, Y. Jiang, and Y. Wang, Exact controllability for a one-dimensional wave equation with the fixed endpoint control, Bound. Value Probl. (2015), 2015:208. | DOI | MR | Zbl
[10] S. Dolecki and D. L. Russell, A general theory of observation and control, SIAM J. Cont. Optim. 15 (1977), no. 2, 185–220. | DOI | MR | Zbl
[11] X. Fu, J. Yong, and X. Zhang, Exact controllability for multidimensional semilinear hyperbolic equations, SIAM J. Control Optim. 46 (2007), no. 5, 1578–1614. | DOI | MR | Zbl
[12] L. F. Ho, Observabilité frontière de l’équation des ondes, C. R. Acad. Sci. Paris Sér. I Math. 302 (1986), 443–446. | Zbl
[13] L. Hörmander, The analysis of linear partial differential operators IV: Fourier integral operators, Springer-Verlag, 1985. | DOI | Zbl
[14] L. Hörmander, On the uniqueness of the Cauchy problem under partial analyticity assumptions, Geometric optics and related topics (Cortona, 1996), Progr. Nonlinear Differential Equations Appl., vol. 32, Birkhäuser Boston, Boston, MA, 1997, pp. 179–219. | DOI | Zbl
[15] A. E. Ingham, Some trigonometrical inequalities with applications to the theory of series, Math. Z. 41 (1936), 367–369. | DOI | MR | Zbl
[16] I. Lasiecka, R. Triggiani, and X. Zhang, Nonconservative wave equations with unobserved Neumann BC: Global uniqueness and observability in one shot, Contemp. Math. 268 (2000), 227–326. | DOI | MR | Zbl
[17] C. Laurent and M. Léautaud, Uniform observability estimates for linear waves, ESAIM Contr. Op. Ca. Va. 22 (2016), no. 4, 1097–1136. | DOI | MR | Zbl
[18] N. Lerner and L. Robbiano, Unicité de Cauchy pour des opérateurs de type principal par, J. Anal. Math. 44 (1984), 32–66. | DOI | Zbl
[19] J.-L. Lions, Contrôlabilité exacte des systèmes distribués, C. R. Acad. Sci. Paris Sér I Math. 302 (1986), 471–475. | DOI | Zbl
[20] —, Exact controllability, stabilizability, and perturbations for distributed systems, SIAM Rev. 30 (1988), 1–68. | DOI | MR | Zbl
[21] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Grundlehren math. Wiss., 1972. | DOI | Zbl
[22] M. M. Miranda, Exact controllability for the wave equation in domains with variable boundary, Revista Matemática de la Universidad Complutense de Madrid 9 (1996), no. 2, 435–457. | DOI | MR | Zbl
[23] L. Robbiani and C. Zuily, Uniqueness in the Cauchy problem for operators with partially holomorphic coefficients, Invent. Math. 131 (1998), no. 3, 493–539. | DOI | MR | Zbl
[24] J. Le Rousseau, G. Lebeau, P. Terpolilli, and E. Trélat, Geometric control condition for the wave equation with a time-dependent observation domain, Anal. PDE 10 (2017), no. 4, 983–1015. | DOI | MR | Zbl
[25] A. Sengouga, Exact boundary observability and controllability of the wave equation in an interval with two moving endpoints, , 2018. | arXiv | DOI
[26] —, Observability and controllability of the 1-D wave equation in domains with moving boundary, Acta. Appl. Math. 157 (2018), no. 1, 117–128. | DOI | MR | Zbl
[27] A. Shao, On Carleman and observability estimates for wave equations on time-dependent domains, Proc. Lond. Math. Soc. 119 (2019), no. 4, 998–1064. | DOI | MR | Zbl
[28] H. Sun, H. Li, and L. Lu, Exact controllability for a string equation in domains with moving boundary in one dimension, Electron. J. Diff. Equations 2015 (2015), no. 98, 1–7. | Zbl
[29] D. Tataru, Carleman estimates, unique continuation and applications, http://math.berkeley.edu/~tataru/papers/ucpnotes.ps. | DOI | MR | Zbl
[30] —, A-priori estimates of Carleman’s type in domains with boundaries, J. Math. Pures Appl. 73 (1994), 355–387. | Zbl
[31] —, Unique continuation for solutions to PDEs; Between Hörmander’s theorems and Holmgren’s theorem, Commun. Part. Diff. Eq. 20 (1995), no. 5-6, 855–884. | DOI | Zbl
[32] H. Wang, Y. He, and S. Li, Exact controllability problem of a wave equation in non-cylindrical domains, Electron. J. Diff. Equations 2015 (2015), no. 31, 1–13. | Zbl
[33] X. Zhang, Explicit observability estimate for the wave equation with potential and its application, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 456 (2000), 1101–1115. | DOI | MR | Zbl
[34] —, Explicit observability inequalities for the wave equation with lower order terms by means of Carleman inequalities, SIAM J. Control Optim. 39 (2001), 812–834. | DOI | MR | Zbl
Cited by Sources: