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ON CONTROLLABILITY OF WAVES AND

GEOMETRIC CARLEMAN ESTIMATES

ARICK SHAO

Abstract. The present article is a brief summary of the paper [27], which established new

Carleman and observability estimates for a general class of linear wave equations. The main
features of these estimates are that (a) they apply to a fully general class of time-dependent

domains, with timelike moving boundaries, (b) they apply to linear wave equations in any

spatial dimension and with general time-dependent lower-order coefficients, and (c) they al-
low for smaller time-dependent observation regions than previously obtained from existing

Carleman estimate methods. In particular, the results of [27] imply exact controllability for

general linear waves, again in settings of time-dependent domains and regions of control.

1. Introduction

This article provides an introduction to the recent paper [27], and it serves as a companion
to the presentation given at the Séminaire Laurent Schwartz in February 2019.

The main result of [27] is a novel Carleman estimate for the wave equation, proved using
a Lorentzian geometric approach. This estimate was then used to derive novel observability
inequalities for linear wave equations, with the following features:

(I) The estimates apply to a general class of time-dependent domains with moving bound-
aries.

(II) The estimates apply to wave equations in any spatial dimension.
(III) The estimates apply to general linear waves with time-dependent lower-order coefficients.
(IV) The estimates apply for time-dependent observation regions that are smaller than those

from standard Carleman-based observability inequalities.

An immediate corollary of these observability estimates is a corresponding set of exact control-
lability results for general linear waves, on the same general class of time-dependent domains.

1.1. Background. In evolutionary PDEs, the question of exact controllability concerns whether
one can drive solutions from any prescribed initial state to any desired final state at a later time,
under the constraint that only some limited parameters in the system—the controls—can be set.
In other words, the above asks whether one can fully govern the system through its controls.

In this article, we restrict our attention to linear wave equations,

(1.1) (�φ+∇Xφ+ V φ)|U = 0,

defined on a spacetime domain U ⊆ R1+n, where:

• � = −∂2
t + ∆x is the standard wave operator on R1+n.

• X is a smooth vector field on Ū (and ∇X denotes the derivative along X).
• V is a smooth scalar-valued potential on Ū .

In particular, both X and V are allowed to be non-analytic and time-dependent.

The research in [27] was partly supported by EPSRC grant EP/R011982/1.
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In this setting, the initial and final states are each given by a pair of functions—(φ−0 , φ
−
1 ) and

(φ+
0 , φ

+
1 ), respectively—representing the values of φ and ∂tφ at two fixed times T− < T+. There

are several possibilities for what one can take as the control:

• Interior control: φ is steered by an extra forcing term on the right-hand side of (1.1).
• Dirichlet boundary control: φ is steered by Dirichlet data on the boundary of U .
• Neumann boundary control: φ is steered by Neumann data on the boundary of U .

In this article, we will focus exclusively on Dirichlet boundary control.
For simplicity, and for the sake of exposition, let us first consider the case of a static domain

(1.2) U := R× Ω,

where Ω is a bounded and open subset of Rn that also has a smooth boundary. In this case, our
main problem can be more precisely expressed as follows:

Problem 1.1 (Dirichlet boundary exact controllability). Let U be as in (1.2). Fix also initial
and final times T±, as well as a boundary region Γ ⊆ (T−, T+)× ∂Ω. Given any initial and final
data (φ±0 , φ

±
1 ) ∈ L2(Ω)×H−1(Ω), find a control φb ∈ L2(R× ∂Ω), with φb supported in Γ, such

that the solution φ of (1.1), with initial and Dirichlet boundary data1

(φ, ∂tφ)|t=T− = (φ−0 , φ
−
1 ), φ|R×∂Ω = φb,

also achieves the final state
(φ, ∂tφ)|t=T+

= (φ+
0 , φ

+
1 ).

Problem 1.1 has been studied extensively over the past fifty years. Modern treatments of
controllability are based on the Hilbert Uniqueness Method (HUM ) of Lions [19, 20], which are
closely related to the earlier works of Dolecki and Russell [10]. The key idea is that by duality,
controllability is equivalent to quantitative uniqueness properties of the adjoint wave equation.
In particular, an affirmative answer to Problem 1.1 is equivalent to solving the following problem:

Problem 1.2 (Dirichlet boundary observability). Let U , T±, and Γ be as in Problem 1.1. For
any finite-energy solution ψ to (1.1) with zero Dirichlet boundary data, show that2

(1.3) ‖ψ(T±)‖H1(Ω) + ‖∂tψ(T±)‖L2(Ω) . ‖∂νψ‖L2(Γ),

where ν denotes the outward unit normal on the boundary of U .3

The estimate (1.3) is commonly known as an observability inequality. Since Problems 1.1 and
1.2 are equivalent, we now focus our attention solely on the latter.

Observe that for hyperbolic equations, finite speed of propagation provides an important
obstruction to controllability, as some minimum amount of time is required for information on
∂Ω to travel to all of Ω. This results in a fundamental lower bound on the timespan T+ − T−
required for any controllability, and hence observability, result to hold.4

Many methods have been developed for proving the crucial observability estimate (1.3). Below,
we briefly survey the main classes of techniques that have proved fruitful in this effort:

(1) Fourier methods (see [4] for details), which were some of the earliest employed, have
been applied extensively to wave equations in one spatial dimension, with X = 0 and
V constant. Results along this direction revolve around applying Ingham’s inequality
[15] and its refinements to the Fourier series expansions of ψ, and are often capable of
retrieving the optimal timespan, as dictated by finite speed of propagation.

1It is well-known that linear wave equations are well-posed with data in the above classes; see [21].
2More accurately, ψ should solve the equation adjoint to (1.1), but this has the same form as (1.1).
3In particular, ∂νψ denotes the Neumann trace for ψ on R× ∂Ω.
4This contrasts with heat and Schrödinger equations, which can generally be controlled in arbitrarily small times.

Arick Shao

XI–2



(2) Multiplier methods, on the other hand, can be applied to waves in arbitrary dimensions,
though they are mostly applicable only to free waves (i.e., X = 0 and V = 0). Here, the
key step is to integrate by parts an expression of the form

∫

(T−,T+)×Ω

�ψSψ,

where S represents an appropriately chosen first-order operator. Using this technique, it
was shown (see [12, 20]) that given any x0 ∈ Rn, one could establish (1.3) with timespan

(1.4) T+ − T− > 2R, R := max
y∈∂Ω

|y − x0|,

and with observation/control region given by5

(1.5) Γ := (T−, T+)× {y ∈ ∂Ω | (y − x0) · ν > 0}.

Here, neither the timespan (1.4) nor the observation region (1.5) is necessarily optimal.
(3) Microlocal methods provide some of the most powerful tools in this area, yielding optimal

results with regards to the requisite timespan and observation region. Of particular note
is the seminal result of Bardos, Lebeau, and Rauch [6], which established that (1.3) holds
for Γ = (T−, T+)×Λ if and only if the geometric control condition (abbreviated GCC ) is
satisfied.6 Further extensions of this result were given in [8, 24]; in particular, the latter
extended the results to time-dependent regions Γ satisfying the GCC.

However, one important caveat is that these microlocal methods only apply when the
lower-order coefficients X and V are time-independent, or at most time-analytic.7

(4) Carleman estimates are weighted (spacetime) integral inequalities of the form

(1.6) ‖eλF∇t,xψ‖2L2 + ‖eλFψ‖2L2 . λ−2‖eλF�ψ‖2L2 + . . . ,

containing an additional free parameter λ > 0 and weight eλF . These inequalities have
been applied extensively toward questions of unique continuation; see [13, 29] for general
results. Moreover, some global Carleman estimates have been applied toward proving the
observability estimate (1.3); see the pioneering work of [30], as well as [7, 11, 16, 33, 34].

With regards to observability, Carleman estimates are advantageous due to their ro-
bustness. For instance, they can be used to obtain the same results as from the multiplier
methods, but also for wave equations with arbitrary (sufficiently regular) X and V . (In
particular, by taking λ in (1.6) to be as large as necessary, one can freely “absorb” away
potentially dangerous contributions from lower-order terms.)8

On one hand, methods based on Carleman estimates lack the precision of microlocal
methods and cannot achieve the GCC in general. However, Carleman methods do apply
to wave equations with general time-dependent lower-order coefficients.

For this article, we are particularly concerned with lower-order coefficients X and V that can
vary in both space and time, without any presumption of analyticity. Since robustness is our
primary priority, we resort to exploring Carleman estimates methods here.

5Note (1.5) consists of all x ∈ ∂Ω such that the ray emanating from x0 and passing through x is leaving Ω at x.
6Roughly, the GCC states that every null geodesic in (T−, T+) × Ω—with the additional condition that it is

reflected via geometric optics at the boundary (T−, T+)× ∂Ω—intersects some point of Γ.
7This requirement of time-analyticity is a consequence of the unique continuation results of [14, 23, 31].
8We remark that for technical reasons, existing Carleman-based results [7, 11, 16, 33, 34] dealt only with the case
in which x0 6∈ Ω̄. The present work [27] also improves upon these results by removing this restriction.
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1.2. Non-static domains. While there has been extensive research in the case of static domains
(1.2), the literature on more general time-dependent domains is far more sparse.

Assumption 1.3. We now consider a spacetime domain of the form

(1.7) U :=
⋃

τ∈R
({τ} × Ωτ ),

where the Ωτ ’s are bounded open subsets of Rn, again with smooth boundaries, that also vary
smoothly with respect to τ . In particular, the boundary of U is then given by

(1.8) Ub =
⋃

τ∈R
({τ} × ∂Ωτ ).

In addition, we assume that

• Ub is timelike, that is, Ub “moves at less than the wave, or characteristic, speed”.9

• U “can be transformed into a static region (1.2) via an appropriate change of variables”.10

(In [27], the above was captured more precisely through the notion of a generalized timelike
cylinder, or GTC. For details, see [27, Definition 2.11] and the discussion thereafter.)

By applying a change of coordinates to transform U into a static region of the form (1.2)
(and thus transforming (1.1) into a more complicated hyperbolic equation), one can show that
the standard well-posedness results for (1.1) on a static domain have direct analogues on time-
dependent domains (1.7). As a result, one can pose direct analogues of Problems 1.1 and 1.2 in
the current setting:

Problem 1.4 (Dirichlet boundary exact controllability). Let U satisfy Assumption 1.3, fix initial
and final times T±, and fix a boundary region Γ ⊆ ∂U ∩ {T− < t < T+}. Given any initial and
final data (φ±0 , φ

±
1 ) ∈ L2(ΩT±)×H−1(ΩT±), find a control φb ∈ L2(∂U), with φb supported in Γ,

such that the solution φ of (1.1), and with initial and Dirichlet boundary data

(φ, ∂tφ)|t=T− = (φ−0 , φ
−
1 ), φ|∂U = φb,

also achieves the final state

(φ, ∂tφ)|t=T+
= (φ+

0 , φ
+
1 ).

Problem 1.5 (Dirichlet boundary observability). Let U , T±, and Γ be as in Problem 1.4. For
any finite-energy solution ψ to (1.1) with zero Dirichlet boundary data, show that

(1.9) ‖ψ(T±)‖H1(ΩT± ) + ‖∂tψ(T±)‖L2(ΩT± ) . ‖∂νψ‖L2(Γ),

where ∂νψ denotes the Neumann trace for ψ on ∂U .

Using the standard HUM machinery, one can again show that Problems 1.4 and 1.5 are
equivalent. Thus, we will focus our attention on proving observability.

To this point, the literature on time-dependent domains have only treated special cases:

• A early result [5] of Bardos and Chen, which predated the HUM, proved interior con-
trollability for free waves on domains U that are expanding in time.

• Using the HUM with multiplier methods, Miranda [22] established Dirichlet control
for free waves. Moreover, while the domain U can be time-dependent and needs not
be expanding, the result assumes that U is self-similar and becomes “asymptotically
static”.11

9This is needed to ensure that Ub is an appropriate place for one to impose boundary data.
10This is needed in order to establish basic well-posedness results for (1.1) on U .
11Roughly, each Ωτ is of the form k(τ) · Ω0, and k′(τ) decays sufficiently at large times.
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• More recently, various authors [9, 26, 25, 28, 32] studied the problem in one spatial
dimension using Fourier and multiplier methods. Here, U describes the region between
two timelike lines or curves; in some cases, the optimal observation time was achieved.

In particular, what was missing—and also what was accomplished by the article [27]—are results
for general linear waves on general time-dependent domains, in any dimension.

An informal statement of the main result of [27] can be stated as follows:

Theorem 1.6. Consider a general linear wave equation (1.1) on a domain U satisfying Assump-
tion 1.3. In addition, fix initial and final times T±, fix a point x0 ∈ Rn, and assume

(1.10) T+ − T− > R+ −R−, R± := sup
y∈∂ΩT±

|y − x0|.

Then, for any finite-energy solution ψ to (1.1) on U , with zero Dirichlet boundary data, we have
that the observability estimate (1.9) holds. Moreover, the observation region

Γ ⊆ ∂U ∩ {T− < t < T+}
is time-dependent and “much improved” compared to previous results based on multiplier methods
and Carleman estimates (even in the case of static domains).

In the special case of one spatial dimension, Theorem 1.6 applies to general regions U lying
between two timelike curves and recovers all the existing results in the literature. Furthermore,
Theorem 1.6 achieves the optimal observation time in this setting.

Furthermore, in higher dimensions, Theorem 1.6 provides, to the author’s best knowledge,
the first observability result for general time-dependent domains and linear wave operators.
In particular, even when U is static, the result still achieves an observation region Γ that is
a proper subset of (1.5). On the other hand, in contrast to microlocal results (which are not
applicable in our present non-analytic setting), Theorem 1.6 does not generally recover the GCC.

More precise versions of Theorem 1.6 will be given in later sections, once we have developed
the requisite ideas and terminology. As we hinted at earlier, Theorem 1.6 was proved using novel
Carleman estimates, which will be discussed in further detail later in this article.

1.3. Other directions. There exist numerous observability and exact controllability results for
wave equations on product manifolds R ×M (with M being a Riemannian manifold)—see, for
example, [11, 17, 24] among many others. However, as far as the author is aware, there is
no literature addressing control for waves on general Lorentzian manifolds with time-dependent
geometry. A result of this type would be a natural step beyond [27].

Remark 1.7. Using the conformal invariance of the characteristics of the wave equation (which
play integral roles in our upcoming Carleman estimates), the results of Theorem 1.6 can already
be directly extended to curved backgrounds conformally equivalent to our flat setting.

A less ambitious direction, but one which still contains numerous technical obstacles, is to use
the methods of [27] to prove interior observability inequalities. Here, the challenge is to obtain
an L2-Carleman estimate (as opposed to the H1-Carleman estimate described in this article)
that can be applied to wave equations (1.1) with general lower-order coefficients.

Another future direction is to turn the techniques developed here toward treating nonlinear
wave equations. One advantage of [27] here is that it needs not assume any (time-)analyticity for
the coefficients X and V in (1.1). (We note that similar Carleman estimates have been applied
in [3] toward studying singularity formation for nonlinear waves.)

In the remainder of the article, we give the main ideas behind the proof of Theorem 1.6.
To make the exposition more transparent, we present, in the following sections, a succession of
partial results, each demonstrating different aspects of the main ideas behind Theorem 1.6.

Exp. no XI— On controllability of waves and geometric Carleman estimates
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2. A preliminary multiplier result

The objective of this section is to present a “warm-up” multiplier-based observability estimate
that applies to the free wave equation on general time-dependent domains. While this estimate
is strictly weaker than our main results, it allows us to discuss the effects of time-dependent
domains on observability apart from the other aspects of our main result.

We mention now that ideas from Lorentzian geometry play a prominent role in all our proofs.
In particular, the wave operator � is connected to the Minkowski metric,12

(2.1) g := −dt2 + (dx1)2 + · · ·+ (dxn)2,

in the same way that the Laplacian is connected to the Euclidean metric. Moreover, many
analytical aspects of Riemannian geometry, such as the divergence theorem and integrations
by parts, also have direct Lorentzian analogues; these tools are used heavily throughout the
computations in [27].

2.1. Multiplier arguments revisited. In order to better understand the impact of non-static
domains, let us first briefly recall the classical multiplier approach to observability estimates on
static domains. The starting point of this argument is the identity

(2.2) 0 =

∫

(T−,T+)×Ω

�ψSψ,

where ψ is a solution of (1.1), with X = 0 and V = 0, and where

(2.3) Sψ := (x− x0) · ∇xψ +
n− 1

2
· ψ, x0 ∈ Rn.

Applying various integrations by parts to the right-hand side of (2.2) along with the conser-
vation of energy property of free waves, one arrives at the estimate

(2.4) (T+ − T−) · E(T±) ≤ 2R · E(T±) +
1

2

∫

(T−,T+)×∂Ω

[(x− x0) · ν]|∂νψ|2,

where R is defined as in (1.4), and where E denotes the standard energy:

E(t) :=
1

2

∫

{t}×Ω

[(∂tψ)2 + |∇xψ|2].

Observe now that as long as T+ − T− > 2R, the first term on the right-hand side of (2.4)
can be absorbed into the left, and we can thus control the energy of ψ by its Neumann trace.
Moreover, note that the boundary integral on the right-hand side of (2.4) needs not include all
of (T−, T+)× ∂Ω. Indeed, any point for which the coefficient (x− x0) · ν is non-positive can be
freely excluded from this integral. Finally, combining the above steps with (2.4) results in the
desired observability estimate (1.3), with the observation region Γ given by (1.5).

2.2. Adaptation to time-dependent domains. Let us now see how the classical multiplier
method can be adapted to deal with a time-dependent domain U satisfying Assumption 1.3.

The first point is to notice that the classical multiplier result can be viewed as being “centered
about the point x0” in space. To handle non-static domains, however, we replace this reference
point x0 by a reference event (t0, x0) ∈ R1+n. Intuitively speaking, we center our argument about
not only a fixed location x0, but also a fixed time t0 ∈ R.13

To be more concrete, we now replace the multiplier Sψ from (2.3) by

(2.5) S∗ψ := (t− t0)∂tψ + (x− x0) · ∇xψ +
n− 1

2
· ψ.

12The Minkowski spacetime (R1+n, g) is the setting of special relativity.
13In particular, the contribution from t0 is not seen whenever U is time-independent.
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Compared to S, the operator (2.5) contains an extra term with a time derivative.14 This term
yields the same effect as the applications of energy conservation in the classical argument.

Similar to before, we now begin with the expression

0 =

∫

U∩{T−<t<T+}
�ψS∗ψ.

(Again, we assume ψ satisfies the free wave equation.) From here, however, we apply the
Lorentzian version of integrations by parts, with respect to the Minkowski metric. In partic-
ular, as we are dealing directly with the Minkowski geometry of R1+n, rather than the Euclidean
geometry of Rn, the process can deal directly with objects that are curved in time as well as in
space.

Remark 2.1. One point to note is that through this Lorentzian integration by parts, one obtains
the Minkowski unit normal N to U . More concretely, this Minkowski normal is the same as the
Euclidean normal, except that its time component has the opposite sign.

By completing this computation using the above ideas (see [27, Section 2.2.2] for details), we
arrive at our multiplier-based observability estimate for time-dependent domains:

Theorem 2.2 ([27, Theorem 2.23]). Let U be a time-dependent domain satisfying Assumption
1.3, fix initial and final times T±, and fix a reference point x0 ∈ Rn. Moreover, assume that

(2.6) T+ − T− > R+ −R−, R± := sup
y∈∂ΩT±

|y − x0|,

and fix a reference time t0 ∈ (T−, T+) such that15

(2.7) T+ − t0 > R+, t0 − T− > R−.

Then, any finite-energy solution ψ of the free wave equation �ψ = 0 on U , with zero Dirichlet
boundary data, satisfies the observability inequality

(2.8)

∫

U∩{t=T±}
[(∂tψ)2 + |∇xψ|2 + ψ2] .

∫

Γ0

|Nψ|2,

where N denotes the Minkowski outer-pointing unit normal to U , where

(2.9) Γ0 := Ub ∩ {T− < t < T+} ∩ {N f0 > 0},
and where f0 is the function

(2.10) f0 :=
1

4
[|x− x0|2 − (t− t0)2].

The proof of Theorem 2.2 is a relatively short computation that carries out the above-
mentioned argument.16 We remark that even though Theorem 2.2 only holds for free waves,
this result already applies to general time-dependent domains satisfying Assumption 1.3—in
particular, Theorem 2.2 already achieves the features (I) and (II) described at the beginning of
the article.

Some additional comments on the statement of Theorem 2.2 are in order:

• Theorem 2.2 requires a much smaller observation time than previous results for non-static
domains in higher dimensions. In many cases, our T+ − T− is optimal.

• The condition (2.6) is a direct generalization of (1.4) for static domains. One interpre-
tation is that one needs enough time for information to travel from ∂ΩT− to x0 and then
to ∂ΩT+

.

14In fact, the principal part of S∗ is precisely the Minkowski gradient of the function f0 from (2.10).
15Observe (2.6) implies that a t0 satisfying (2.7) exists.
16In full, it comprises only two pages within [27].
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• The function f0 in (2.10) plays a special role in Minkowski geometry. In particular, its
level sets—which are hyperboloids in R1+n—are invariant under Lorentz transformations.

• The conditionN f0 > 0 in (2.9) is a generalization of the standard condition (x−x0)·ν > 0
from multiplier methods. In fact, when U is static, (2.9) reduces to (1.5).

Finally, a rough qualitative characterization of how the time-dependence of U affects the
observation region Γ0 in Theorem 2.2 can be described as follows:

• Where U is expanding away from time t0, the region Γ0 is smaller than that of (1.5).
• Where U is shrinking away from time t0, the region Γ0 is larger than that of (1.5).

3. The new Carleman estimate

While Theorem 2.2 already captures the essential ideas behind dealing with time-dependent
domains, its main drawback is that it only applies to the free wave equation. To extend our
results to general linear wave equations (1.1)—without assuming analyticity for X, V , or Ub—we
will have to establish a Carleman-based analogue of Theorem 2.2. Moreover, we have yet to
improve the region of observation compared to existing Carleman-type results.

Recall that Dirichlet observability can be derived from global Carleman estimates of the form

(3.1) ‖eλF∇t,xψ‖2L2(V) + ‖eλFψ‖2L2(V) . λ−2‖eλF�ψ‖2L2(V) + λ‖eλFNψ‖L2(Γ), λ� 1,

where Γ ⊆ Ub is the desired observation region, where V is an appropriate subset of the domain
U , and where N denotes the Minkowski outer-pointing unit normal to U . Indeed, from (3.1),
one then usually obtains an observability estimate through fairly standard methods:

• Using energy estimates, the bulk integrals on the left-hand side of (3.1) can be bounded
from below by the energy of ψ at a fixed time.
• �ψ can be replaced by lower-order terms using (1.1). These terms can then be absorbed

into the left-hand side using the smallness of λ−2.

Thus, the critical task here is to derive a novel global Carleman inequality of the form (3.1)
that successfully leads to Theorem 2.2, as well as accomplishes objectives (III) and (IV) from
the beginning of the article. This is the objective of the present section.

3.1. An almost correct weight. The proof of (3.1) can be superficially described in terms of
multipliers. Indeed, the starting point is to integrate by parts an expression of the form∫

(eλF�ψ)S(eλFψ).

In other words, the rough idea is to apply a multiplier-type argument for the conjugated wave
operator eλF�e−λF and multiplier S to the function ψ∗ := eλFψ. If the function F and the
multiplier S are appropriately chosen, then one can manipulate this computation to ensure that
the resulting bulk integrals are positive, as in the left-hand side of (3.1).17

Thus, to describe our Carleman estimate, we must first specify the F and S that we use.
For the present discussion, let us take a weight eλF that is incorrect—in that it does not quite
suffice for proving Theorem 1.6—but is particularly useful for explaining some key ideas. (We
will proceed to pick the true Carleman weight later in this section.)

We begin by returning to the function f0 defined in (2.10),

f0 :=
1

4
[|x− x0|2 − (t− t0)2].

Observe that f0 has the following properties:

• The level sets of f0 are hyperboloids centered about (t0, x0).

17More specifically, the main condition required for positivity is pseudoconvexity for the level sets of F ; see [13].
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• These level sets are invariant under spatial rotations and Lorentz boosts about (t0, x0).
• The level set {f0 = 0} is precisely the double null cone with vertex at (t0, x0),

(3.2) Ct0,x0 = {|t− t0| = |x− x0|}.
In addition, we denote the exterior of Ct0,x0

, where f0 is positive, by

(3.3) Dt0,x0
:= {f0 > 0}.

Now, since f0 played such a central role in Theorem 2.2, it is not surprising that it would be
similarly involved in the Carleman estimate. Indeed, we set our Carleman weight as

(3.4) eλF = fλ0 e
2λf

1
2
0 , F := λ log f0 + 2λbf

1
2

0 .

In particular, by being based off of f0, our weight has the advantage of being well-adapted to
the wave operator and its underlying Minkowski geometry.

A particularly important, and novel, feature of the weight (3.4) is that eλF vanishes whenever
f0 = 0. The upshot of this is that the cone Ct0,x0 can be used as an extra boundary for our
Carleman inequality, on which no boundary terms are produced. In other words, by using (3.4),
we can obtain a Carleman estimate that is entirely supported within Dt0,x0

∩ U .18

Remark 3.1. The above should be contrasted with more classical applications of Carleman esti-
mates, for which the support of the estimate is constrained using an additional cutoff function.19

Here, because of the vanishing of our Carleman weight eλF on Ct0,x0
, we can naturally restrict

our estimate to Dt0,x0
, without employing any cutoff function.

By carrying out the usual computations behind Carleman estimates (from the geometric point
of view) using the multiplier S := S∗ and the weight (3.4), we can obtain the following inequality:

0·‖eλF∇t,xψ‖2L2(U∩Dt0,x0 ) + ‖eλFψ‖2L2(U∩Dt0,x0 )(3.5)

. λ−2‖eλF�ψ‖2L2(U∩Dt0,x0 ) + ‖eλFNψ‖L2(Γ∗),

where Γ∗ is given by

(3.6) Γ∗ := Ub ∩ Dt0,x0
∩ {N f0 > 0}.

Let us ignore, for the moment, the factor 0 in blue in (3.5) (which, admittedly, is quite
problematic and ultimately causes our weight (3.4) to fail). Observe that the boundary region Γ∗
that we achieve in (3.5) is precisely Γ0 (defined in (2.9)) from our previous multiplier result,
but further restricted to Dt0,x0 .20 In particular, the restriction to Dt0,x0 makes Γ∗ inherently
time-dependent.

In fact, this additional restriction of the boundary term to Dt0,x0
is precisely the source of our

improvement of the observation region described in (IV) at the beginning of the article.21

3.2. A relativistic interpretation. Before discussing how F is to be modified so that the
resulting Carleman estimate suffices to imply Theorem 1.6, let us first gain a better understanding
of the region Γ∗ from (3.6) by giving an interpretation of it through special relativity.

Consider a point (tb, xb) ∈ Γ∗. Since (tb, xb) lies in the exterior of the light cone Ct0,x0
, so

that (tb, xb) and (t0, x0) are not causally related, one can apply an appropriate Lorentz boost,

18Similar Carleman estimates with vanishing weights have been used in different contexts; see, for instance, [2]

for global unique continuation results and [3] for singularity formation results.
19In the context of proving observability results, one uses an cutoff function depending only on t.
20The further restriction on t in (2.9) is already implied here by the restriction to Dt0,x0 in (3.6).
21Recall that classical Carleman methods would also yield observation regions analogous to Γ0 from (2.9).

Exp. no XI— On controllability of waves and geometric Carleman estimates

XI–9



centered about (t0, x0), in order to obtain an inertial coordinate system (t′, x′) on R1+n such
that22

t′(tb, xb) = t′(t0, x0) = t(t0, x0) = t0.

In other words, (tb, xb) and (t0, x0) are simultaneous in the (t′, x′)-coordinates.
Recall that f0 is invariant under Lorentz boosts. Thus, the defining condition N f0 > 0 for Γ∗

at (tb, xb), in terms of the new boosted coordinates, is given by

(3.7) 0 < N f∗|(tb,xb) =
1

4
N [|x′ − x0|2]|(tb,xb) =

1

2
[(x′ − x0) · ν′]|(tb,xb),

where ν′ denotes the spatial component of N in (t′, x′)-coordinates. In other words, (3.7) is
simply the standard condition (x−x0) · ν > 0 from the classical estimates, but now with respect
to a boosted inertial coordinate system in which (t0, x0) and (tb, xb) are simultaneous.

Finally, Figure 3.1 below gives some graphical examples of regions Γ∗.

Figure 3.1. The first image shows the boundary Ub (in orange) of a non-static
domain U . The second image shows one case in which the point (t0, x0) (in red)
lies within U ; here, Γ∗ (drawn in green) is the full intersection of Ub with the
null cone exterior Dt0,x0 . The last two images demonstrate another case with
(t0, x0) outside of Ū : in the third image, the shaded piece (in light purple) is the
full intersection of Ub with the Dt0,x0

, while in the fourth image, the highlighted
piece (in green) is the strictly smaller region Γ∗. All of the images were generated
using Mathematica.

3.3. The conformal transformation. The final task of this section is to return to the issue
that the Carleman weight eλF fails to achieve the desired observability estimate in Theorem 1.6,
and to discuss how this shortcoming can be remedied.

First, let us briefly recall why F fails. Recall that the main requirement for a weight to
produce a viable Carleman estimate is that its level sets are pseudoconvex (with respect to �).23

Unfortunately, one can see that the level sets of f0 (and hence the level sets of F ) barely fail to
be pseudoconvex.24 The upshot of this is that the resulting Carleman estimate can no longer
control the derivative of the solution ψ, so we only obtain an estimate of the form

(3.8) ‖eλFψ‖2L2(U∩Dt0,x0
) . λ−2‖eλF�ψ‖2L2(U∩Dt0,x0

) + ‖eλFNψ‖L2(Γ∗).

22By inertial, we mean that the Minkowski metric in (t′, x′)-coordinates is given by g = −(dt′)2 + (dx′1)2 +

. . . (dx′n)2.
23In the context of wave equations, this pseudoconvexity can be roughly described as follows: any null geodesic

that hits such a level set tangentially lies entirely on one side of this set nearby; see [13, 18].
24These level sets are zero pseudoconvex, in that there are null geodesics lying exactly on these hyperboloids.

Arick Shao

XI–10



(This was indicated in (3.4) by the blue factor of zero.) Since (3.8) does not control the full
H1-norm, we cannot hope to obtain the H1-control needed for observability.

To overcome this, the general idea is to perturb f0 into a slightly different function fε whose
level sets are pseudoconvex. Previous Carleman-based observability results [7, 16, 33, 34] used

fε,c :=
1

4
[|x− x0|2 − (1− ε)(t− t0)2],

whose level sets are hyperboloids associated to waves with a slightly slower speed. However, a
significant drawback to this approach is that this fε,c is not well-adapted to the characteristics
of the wave equation. In particular, since fε,c = 0 is no longer the null cone Ct0,x0

, one cannot
use weights based on fε,n to obtain Carleman estimates that are naturally supported on Dt0,x0

.
In other words, we would no longer be able to achieve objective (IV).

Therefore, to preserve our improved observation regions, we must adopt another strategy for
perturbing f0. For this, we take a very different conformal geometric approach, in which we
perturb the spacetime geometry rather than the weight function.

To be more precise, we define the following “warped” Minkowski metric in polar coordinates,

(3.9) gε := −dt2 + dr2 + (r2 + 2εf0)̊γ,

where γ̊ denotes the round metric for the unit sphere Sn−1. Although f0 is fails to be pseudocon-
vex with respect to �, one can observe, on the other hand, that f0 is pseudoconvex with respect
to the wave (i.e., Laplace–Beltrami) operator associated with gε.

The second key observation is that (Dt0,x0 , g) is conformally related to (D0,0, gε)—via an ap-
propriate change of coordinates, the pullback of gε is a conformal factor times g. Now, since
pseudoconvexity is a conformally invariant property, one can then obtain a perturbed pseudo-
convex weight fε by pulling back f0 through the above conformal isometry.25

Remark 3.2. fε can be written explicitly as

fε :=
−uv

(1 + εu)(1− εv)
, v :=

1

2
(t+ r), u :=

1

2
(t− r).

Thus, we can use fε in the place of f0 to obtain a Carleman estimate that controls the full H1-
norm. Furthermore, as the region {fε > 0} still corresponds to the null cone exterior Dt0,x0

, one
can ensure that this new Carleman estimate is supported entirely within Dt0,x0

.26 In particular,
objective (IV) is still achieved, and we end up with a Carleman estimate of the form

‖eλFε∇t,xψ‖2L2(U∩Dt0,x0 ) + ‖eλFεψ‖2L2(U∩Dt0,x0 )(3.10)

. λ−2‖eλFε�ψ‖2L2(U∩Dt0,x0 ) + ‖eλFεNψ‖L2(Y∗),

where:27

• Fε is the function obtained by replacing all instances of f0 in (3.4) by fε.
• Y∗ can be any open subset of Ub that contains the closure of Γ∗.

A precise statement of the Carleman estimate is given in [27, Theorem 3.1].
Note that the boundary region Y∗ in (3.10) now must be larger than the region Γ∗ from our

failed estimate. This comes from the fact that the previous condition N f0 > 0 from (3.6) is now
replaced by N fε > 0. On the other hand, since fε can be made an arbitrarily small perturbation
of f0 by taking ε to be small enough, Y∗ needs differ from Γ∗ only by an arbitrarily small amount.

25The ideas for warpings and their conformal relations, as well as their applications to Carleman estimates,

originated in [1, 2], though these papers treated rather different problems and settings.
26Observe that null cones are invariant under Lorentzian conformal transformations.
27Here, the associated multiplier S is given by the gradient of fε, rather than f0 (as was in the case of S∗ from
(2.5)).
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Finally, we note that we do not actually prove the Carleman estimate (3.10) directly using fε.
Instead, we first prove a preliminary Carleman estimate using f0, but within the “warped” space-
time (3.9). We then pull this Carleman estimate back through the above-mentioned conformal
relation in order to obtain (3.10). This has the advantage of simplifying many computations,
since f0 is much easier to deal with in the warped spacetime than fε is in Minkowski spacetime.

4. Observability

Having described our Carleman estimate for time-dependent domains, we can now state our
main observability result, that is, the precise version of Theorem 1.6.

Theorem 4.1 ([27, Theorem 4.1, Theorem 4.5]). Consider a general linear wave equation (1.1)
on a domain U satisfying Assumption 1.3. Also, fix T− < T+, x0 ∈ Rn, and t0 ∈ R, and assume:

• The condition (1.10) holds for T+ − T−.
• The condition (2.7) holds for t0.

Then, for any finite-energy solution ψ to (1.1) on U , with zero Dirichlet boundary data, we have

(4.1)

∫

U∩{t=T±}
[(∂tψ)2 + |∇xψ|2 + ψ2] .

∫

Y∗

|Nψ|2,

where:

• N denotes the Minkowski outer-pointing unit normal to U .
• Y∗ is an open subset of Ub that contains the closure of the region Γ∗ from (3.6).

Again, note that Theorem 4.1 extends the multiplier-based result of Theorem 2.2 to general
wave equations (1.1). In particular, when U is static, Theorem 4.1 achieves a smaller observation
region than previous results based on multiplier and Carleman estimates (that is, (1.5)).

While the proof of Theorem 4.1 follows the same template as described in the beginning of
Section 3, there are a few differences in the argument due to the nature of our Carleman estimate.
Furthermore, in contrast to previous Carleman-based observability results, we can now handle
the case in which our central event (t0, x0) lies within the domain U .

Below, we make a few brief comments regarding the above points of the proof.

4.1. Exterior observability. Let us first consider the case (t0, x0) does not lie on U nor Ub.
Starting from the Carleman estimate (3.10), the main idea is to observe that the region U∩Dt0,x0

contains the entire cross-section U ∩ {t = t0}, on which the weight eλFε is uniformly bounded
from below. Therefore, using local energy estimates, we can bound the left-hand side of (3.10)
from below by the left-hand side of (4.1), completing the proof of Theorem 4.1 in this case.

For details, the reader is referred to [27, Section 4.1].

Remark 4.2. In more standard proofs of observability, one must apply a Carleman estimate to
ξψ, where ξ is an appropriate cutoff function depending on t. However, since our estimate (3.10)
is naturally restricted to Dt0,x0 , we do not need such a cutoff function here.

Remark 4.3. In addition, the borderline case (t0, x0) ∈ Ub can be treated by shifting (t0, x0)
slightly away from U and then applying the preceding argument.

4.2. Interior observability. For the case (t0, x0) ∈ U (which has not been treated in previous
Carleman-based arguments), observe it is no longer the case that U ∩ Dt0,x0

contains a cross-
section of U . As a result, we cannot recover the energy of ψ directly from (3.10).

To deal with this issue, we choose two distinct points x1, x2 very close to x0, we apply the
(3.10) twice—to (t0, x1) and (t0, x2), and we sum the results of both Carleman estimates. Then,
the combination of both Carleman estimates contains the full cross-section U ∩{t = t0}, and the
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sum of the two Carleman weights is now uniformly bounded from below on this cross-section.
Thus, the observability estimate (4.1) again follows by local energy estimates.28

See [27, Section 4.2] for details of this argument.
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[19] J.-L. Lions, Contrôlabilité exacte des systèmes distribués, C. R. Acad. Sci. Paris Sér I Math. 302 (1986),
471–475.

[20] , Exact controllability, stabilizability, and perturbations for distributed systems, SIAM Rev. 30 (1988),
1–68.

[21] J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Grundlehren math.
Wiss., 1972.

[22] M. M. Miranda, Exact controllability for the wave equation in domains with variable boundary, Revista
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rem, Commun. Part. Diff. Eq. 20 (1995), no. 5-6, 855–884.
[32] H. Wang, Y. He, and S. Li, Exact controllability problem of a wave equation in non-cylindrical domains,

Electron. J. Diff. Equations 2015 (2015), no. 31, 1–13.

[33] X. Zhang, Explicit observability estimate for the wave equation with potential and its application, Proc. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci. 456 (2000), 1101–1115.

[34] , Explicit observability inequalities for the wave equation with lower order terms by means of Carleman

inequalities, SIAM J. Control Optim. 39 (2001), 812–834.

School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United

Kingdom

Email address: a.shao@qmul.ac.uk

Arick Shao

XI–14


