In this note, we will review our recent work on the asymptotic behaviors of nonlinear Klein-Gordon equation with damping terms and Landau-Lifschitz flows from Eucliedean spaces and hyperbolic spaces. By the method of concentration-compactness attractors, we prove that the global bounded solution will decouple into a finite number of equilibrium points with different shifts from the origin. For the Landau-Lifschitz flow from Euclidean spaces, we prove that the solution with energy below will converge to some constant map in the energy space. While for the Landau-Lifschitz flow from two dimensional spaces, the solution will converge to some harmonic map.
@article{SLSEDP_2017-2018____A6_0, author = {Ze Li and Lifeng Zhao}, title = {Asymptotic behaviors for nonlinear dispersive equations with damping or dissipative terms}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:6}, pages = {1--11}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2017-2018}, doi = {10.5802/slsedp.120}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.120/} }
TY - JOUR AU - Ze Li AU - Lifeng Zhao TI - Asymptotic behaviors for nonlinear dispersive equations with damping or dissipative terms JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:6 PY - 2017-2018 SP - 1 EP - 11 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.120/ DO - 10.5802/slsedp.120 LA - en ID - SLSEDP_2017-2018____A6_0 ER -
%0 Journal Article %A Ze Li %A Lifeng Zhao %T Asymptotic behaviors for nonlinear dispersive equations with damping or dissipative terms %J Séminaire Laurent Schwartz — EDP et applications %Z talk:6 %D 2017-2018 %P 1-11 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.120/ %R 10.5802/slsedp.120 %G en %F SLSEDP_2017-2018____A6_0
Ze Li; Lifeng Zhao. Asymptotic behaviors for nonlinear dispersive equations with damping or dissipative terms. Séminaire Laurent Schwartz — EDP et applications (2017-2018), Talk no. 6, 11 p. doi : 10.5802/slsedp.120. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.120/
[1] N. Burq, G. Raugel, W. Schlag, Long time dynamics for damped Klein-Gordon equations, Ann. Sci. ENS 50 (2017), 1447-1498. | DOI | MR | Zbl
[2] T. Cazenave, Uniform estimates for solutions of nonlinear Klein-Gordon equations, J. Functional Analysis, 60 (1985), 36-55. | DOI | MR | Zbl
[3] R. Cote, On the soliton resolution for equivariant wave maps to the sphere, Comm. Pure. App. Math, 68 (2015), 1946-2004. | DOI | MR | Zbl
[4] R. Cote, C. Kenig, A. Lawrie, W. Schlag, Characterization of large energy solutions of the equivariant wave map problem: II , Amer. J. Math. 137 (2015), no. 1, 209-250. | DOI | MR | Zbl
[5] R. Cote, C. Kenig, A. Lawrie, W. Schlag, Characterization of large energy solutions of the equivariant wave map problem: I, Amer. J. Math. 137 (2015), no.1, 139-207. | DOI | MR | Zbl
[6] R. Cote, C. Kenig, A. Lawrie, W, Schlag, Profiles for the radial focusing 4d energy-critical wave equation, Math. Ann. 365 (2016), no. 1-2, 707-803. | DOI | MR | Zbl
[7] T. Duyckaerts, C. Kenig, F. Merle, Classification of radial solutions of the focusing, energy-critical wave equation, Cambridge Journal of Mathematics 1 (2013), no. 1, 75-144. | DOI | MR | Zbl
[8] T. Duyckaerts, C. Kenig, F. Merle, Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation, J. Eur. Math. Soc. (JEMS) 13 (2011), no. 3, 533-599. | DOI | Zbl
[9] T. Duyckaerts, C. Kenig, F. Merle, Universality of blow-up profile for small radial type II blow-up solutions of the energy-critical wave equation: the nonradial case, J. Eur. Math. Soc. (JEMS) 14 (2011), 1389-1454. | Zbl
[10] T., Duyckaerts, C., Kenig, F., Merle, Scattering for radial, bounded solutions of focusing supercritical wave equations, Int. Math. Res. Not. IMRN 2014, no. 1, 224-258. | DOI | MR | Zbl
[11] E. Feireisl, Convergence to an equilibrium for semilinear wave equations on unbounded intervals, Dynam. Syst. Appl. 3 (1994), 423-434. | Zbl
[12] E. Feireisl, Finite energy travelling waves for nonlinear damped wave equations, Quarterly Journal of Applied mathematics LVI(1998), 55-70. | DOI | MR | Zbl
[13] H., Jia, B. Liu, G. Xu, Long time dynamics of defocusing energy critical 3 + 1 dimensional wave equation with potential in the radial case, Comm. Math. Phy., 339(20-15), 353-384. | DOI | MR | Zbl
[14] H. Jia, C. Kenig, Asymptotic decomposition for semilinear wave and equivariant wave map equations, Amer. J. Math. 139 (2017), 1521-1603. | DOI | MR | Zbl
[15] C., Kenig, A., Lawrie, W., Schlag, Relaxation of wave maps exterior to a ball to harmonic maps for all data, Geom. Funct. Anal. (GAFA). 24 (2014), no. 2, 610-647. | DOI | MR | Zbl
[16] C., Kenig, A., Lawrie, B.P., Liu, W., Schlag, Stable soliton resolution for exterior wave maps in all equivariance classes, Advances in Math. 285 (2015), 235-300. | DOI | MR | Zbl
[17] C., Kenig, A., Lawrie, B.P., Liu, W., Schlag, Channels of energy for the linear radial wave equation, Advances in Math. 285 (2015), 877-936. | DOI | MR | Zbl
[18] A. Lawrie, S.J. Oh, S. Shahshahani. Profile decompositions for wave equations on hyperbolic space with applications, Math. Ann., 365(1-2), 707-803, 2016. | DOI | MR | Zbl
[19] A. Lawrie, S.J. Oh, S. Shahshahani. Gap eigenvalues and asymptotic dynamics of geometric wave equations on hyperbolic space, 271(11), 3111-3161, 2016. | DOI | MR | Zbl
[20] A. Lawrie, S.J. Oh, S. Shahshahani. Stability of stationary equivariant wave maps from the hyperbolic plane, , 2014. | arXiv | DOI | MR | Zbl
[21] A. Lawrie, S.J. Oh, S. Shahshahani. The Cauchy problem for wave maps on hyperbolic space in dimensions , , 2015. | arXiv | DOI | Zbl
[22] M. Lemm, V. Markovic. Heat flows on hyperbolic spaces, , 2015. | arXiv | DOI | MR | Zbl
[23] Z. Li, L. Zhao, Asymptotic decomposition for nonlinear damped Klein-Gordon equations, , 2015. | arXiv
[24] Z. Li, L. Zhao, Asymptotic behaviors of Landau-Lifshitz flows from to Kähler manifolds, Cal.Var.PDE (2017), 56-96. | Zbl
[25] Z. Li, L. Zhao, Convergence to harmonic maps for the Landau-Lifshitz flows on two dimensional hyperbolic spaces, . | arXiv | Zbl
[26] R. Schoen, S.T. Yau. Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature, Commentarii Mathematici Helvetici, 1976, 39: 333-341. | DOI | MR | Zbl
[27] A. Soffer, Soliton dynamics and scattering, ICM 2006 Vol3, 459-471. | DOI | Zbl
[28] T. Tao, A (concentration-) compact attractor for highdimensional nonlinear Schrödinger equations, Dynamics of Partial Differential Equations, 4 (2007) 1-53. | DOI | Zbl
Cited by Sources: