The structure of a standing plane shock wave in a polyatomic gas is investigated on the basis of kinetic theory, with special interest in gases with large bulk viscosities, such as CO gas. The ellipsoidal statistical (ES) model for a polyatomic gas is employed. First, the shock structure is computed numerically for different upstream Mach numbers and for different (large) values of the ratio of the bulk viscosity to the shear viscosity, and the double-layer structure consisting of a thin upstream layer with a steep change and a much thicker downstream layer with a mild change is obtained. Then, an asymptotic analysis for large values of the ratio is carried out, and an analytical solution that describes the thick downstream layer correctly is obtained.
@article{SLSEDP_2017-2018____A7_0, author = {Kazuo Aoki and Shingo Kosuge}, title = {Shock wave structure for polyatomic gases with large bulk viscosities}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:7}, pages = {1--18}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2017-2018}, doi = {10.5802/slsedp.121}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.121/} }
TY - JOUR AU - Kazuo Aoki AU - Shingo Kosuge TI - Shock wave structure for polyatomic gases with large bulk viscosities JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:7 PY - 2017-2018 SP - 1 EP - 18 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.121/ DO - 10.5802/slsedp.121 LA - en ID - SLSEDP_2017-2018____A7_0 ER -
%0 Journal Article %A Kazuo Aoki %A Shingo Kosuge %T Shock wave structure for polyatomic gases with large bulk viscosities %J Séminaire Laurent Schwartz — EDP et applications %Z talk:7 %D 2017-2018 %P 1-18 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.121/ %R 10.5802/slsedp.121 %G en %F SLSEDP_2017-2018____A7_0
Kazuo Aoki; Shingo Kosuge. Shock wave structure for polyatomic gases with large bulk viscosities. Séminaire Laurent Schwartz — EDP et applications (2017-2018), Talk no. 7, 18 p. doi : 10.5802/slsedp.121. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.121/
[1] M. N. Kogan, Rarefied Gas Dynamics, Plenum, New York, 1969. | DOI
[2] J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases, North Holland, Amsterdam, 1972. | DOI
[3] C. Cercignani, The Boltzmann Equation and Its Applications, Springer, Berlin, 1988. | DOI | Zbl
[4] G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, Oxford, 1994.
[5] Y. Sone, Molecular Gas Dynamics: Theory, Techniques, and Applications, Birkhäuser, Boston, 2007. | DOI | MR | Zbl
[6] S. Taniguchi, T. Arima, T. Ruggeri, and M. Sugiyama, Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: Beyond the Bethe-Teller theory, Phys. Rev. E, 89, 013025 (2014). | DOI
[7] S. Taniguchi, T. Arima, T. Ruggeri, and M. Sugiyama, Overshoot of the non-equilibrium temperature in the shock wave structure of a rarefied polyatomic gas subject to the dynamic pressure, Int. J. Non-Linear Mech., 79, 66–75 (2016). | DOI
[8] P. Andries, P. Le Tallec, J.-P. Perlat, and B. Perthame, The Gaussian-BGK model of Boltzmann equation with small Prandtl number, Eur. J. Mech. B/Fluids, 19, 813–830 (2000). | DOI | MR | Zbl
[9] S. Brull and J. Schneider, On the ellipsoidal statistical model for polyatomic gases, Continuum Mech. Thermodyn., 20, 489–508 (2009). | DOI | MR | Zbl
[10] S. Kosuge and K. Aoki, Shock-wave structure for a polyatomic gas with large bulk viscosity, Phys. Rev. Fluids, 3, 023401 (2018). | DOI
[11] F. J. Uribe, E. A. Mason, and J. Kestin, Thermal conductivity of nine polyatomic gases at low density, J. Phys. Chem. Ref. Data, 19, 1123–1136 (1990). | DOI
[12] G. Emanuel, Bulk viscosity of a dilute polyatomic gas, Phys. Fluids A, 2, 2252–2254 (1990). | DOI
[13] M. Pavić-Čolić, D. Madjarević, and S. Simić, Polyatomic gases with dynamic pressure: Kinetic non-linear closure and the shock structure, Int. J. Non-Linear Mech. 92, 160–175 (2017). | DOI
[14] T. Arima, S. Taniguchi, T. Ruggeri, and M. Sugiyama, Extended thermodynamics of real gases with dynamic pressure: an extension of Meixner’s theory, Phys. Lett. A 376, 2799–2803 (2012). | DOI | MR | Zbl
[15] T. Ruggeri, Non-linear maximum entropy principle for a polyatomic gas subject to the dynamic pressure, Bulletin of the Institute of Mathematics, Academia Sinica (New Series), 11, 1–22 (2016). | Zbl
Cited by Sources: