We consider wave propagation in random media in the paraxial regime. We show how to solve the equations for the second- and fourth-order moment of the field in the regime where the correlation length of the medium is smaller than the initial beam width. We quantify the scintillation of the transmitted field and the statistical stability of the Wigner transform. We finally discuss a few applications to correlation-based communication and imaging methods.
@article{SLSEDP_2016-2017____A9_0, author = {Josselin Garnier}, title = {High-order statistics for the random paraxial wave equation}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:9}, pages = {1--14}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2016-2017}, doi = {10.5802/slsedp.108}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.108/} }
TY - JOUR AU - Josselin Garnier TI - High-order statistics for the random paraxial wave equation JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:9 PY - 2016-2017 SP - 1 EP - 14 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.108/ DO - 10.5802/slsedp.108 LA - en ID - SLSEDP_2016-2017____A9_0 ER -
%0 Journal Article %A Josselin Garnier %T High-order statistics for the random paraxial wave equation %J Séminaire Laurent Schwartz — EDP et applications %Z talk:9 %D 2016-2017 %P 1-14 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.108/ %R 10.5802/slsedp.108 %G en %F SLSEDP_2016-2017____A9_0
Josselin Garnier. High-order statistics for the random paraxial wave equation. Séminaire Laurent Schwartz — EDP et applications (2016-2017), Talk no. 9, 14 p. doi : 10.5802/slsedp.108. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.108/
[1] G. Bal, On the self-averaging of wave energy in random media, SIAM Multiscale Model. Simul. 2 (2004), 398–420. | DOI | MR | Zbl
[2] L. Borcea, G. Papanicolaou, and C. Tsogka, Interferometric array imaging in clutter, Inverse Problems 21 (2005), 1419–1460. | DOI | MR | Zbl
[3] L. Borcea, J. Garnier, G. Papanicolaou, and C. Tsogka, Enhanced statistical stability in coherent interferometric imaging, Inverse Problems 27 (2011), 085004. | DOI | MR | Zbl
[4] N. D. Cartwright, A non-negative Wigner-type distribution, Physica 83A (1976), 210–212. | DOI
[5] D. Dawson and G. Papanicolaou, A random wave process, Appl. Math. Optim. 12 (1984), 97–114. | DOI | MR | Zbl
[6] R. L. Fante, Electromagnetic beam propagation in turbulent media, Proc. IEEE 63 (1975), 1669–1692. | DOI
[7] J. Garnier, Ghost imaging in the random paraxial regime, Inverse Problems and Imaging 10 (2016), 409–432. | DOI | MR | Zbl
[8] J. Garnier and G. Papanicolaou, Passive Imaging with Ambient Noise, Cambridge University Press, Cambridge, 2016. | DOI | Zbl
[9] J. Garnier and K. Sølna, Coupled paraxial wave equations in random media in the white-noise regime, Ann. Appl. Probab. 19 (2009), 318–346. | DOI | MR | Zbl
[10] J. Garnier and K. Sølna, Scintillation in the white-noise paraxial regime, Comm. Part. Differ. Equat. 39 (2014), 626–650. | DOI | MR | Zbl
[11] J. Garnier and K. Sølna, Fourth-moment analysis for beam propagation in the white-noise paraxial regime, Archive on Rational Mechanics and Analysis 220 (2016), 37–81. | DOI | MR | Zbl
[12] J. Garnier and K. Sølna, Focusing waves through a randomly scattering medium in the white-noise paraxial regime, SIAM J. Appl. Math. 77 (2017), 500–519. | DOI | MR | Zbl
[13] A. Ishimaru, Wave Propagation and Scattering in Random Media, Academic Press, San Diego, 1978. | DOI | Zbl
[14] G. Manfredi and M. R. Feix, Entropy and Wigner functions, Phys. Rev. E 62 (2000), 4665–4674. | DOI
[15] A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, Controlling waves in space and time for imaging and focusing in complex media, Nature Photon. 6 (2012), 283–292. | DOI
[16] J. A. Newman and K. J. Webb, Fourier magnitude of the field incident on a random scattering medium from spatial speckle intensity correlations, Opt. Lett. 37 (2012), 1136–1138. | DOI
[17] G. Papanicolaou, L. Ryzhik, and K. Sølna, Self-averaging from lateral diversity in the Itô-Schrödinger equation, SIAM Multiscale Model. Simul. 6 (2007), 468–492. | DOI | Zbl
[18] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, Image transmission through an opaque material, Nature Commun. 1 (2010), 1–5. | DOI
[19] J. H. Shapiro and R. W. Boyd, The physics of ghost imaging, Quantum Inf. Process. 11 (2012), 949–993. | DOI | Zbl
[20] I. M. Vellekoop and A. P. Mosk, Focusing coherent light through opaque strongly scattering media, Opt. Lett. 32 (2007), 2309–2311. | DOI
Cited by Sources: