In this note, we investigate some questions around velocity averaging lemmas, a class of results which ensure the regularity of the “velocity average” when and both belong to , and the measured set of velocities satisfy a nondegeneracy assumption. We are interested in the case when the variable lies in a discrete subset of .
We present results obtained in collaboration with T. Goudon in [2]. First of all, we provide a rate, depending on the number of velocities, to the defect of regularity which is reached when ranges over a continuous set. Second of all, we show that the regularity holds in expectation when the set of velocities is chosen randomly. We apply this statement to obtain a consistency result for the diffusion limit in the case of the Rosseland approximation.
@article{SLSEDP_2016-2017____A10_0, author = {Nathalie Ayi}, title = {Stochastic discrete velocity averaging lemmas and {Rosseland} approximation}, journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications}, note = {talk:10}, pages = {1--10}, publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique}, year = {2016-2017}, doi = {10.5802/slsedp.100}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.100/} }
TY - JOUR AU - Nathalie Ayi TI - Stochastic discrete velocity averaging lemmas and Rosseland approximation JO - Séminaire Laurent Schwartz — EDP et applications N1 - talk:10 PY - 2016-2017 SP - 1 EP - 10 PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.100/ DO - 10.5802/slsedp.100 LA - en ID - SLSEDP_2016-2017____A10_0 ER -
%0 Journal Article %A Nathalie Ayi %T Stochastic discrete velocity averaging lemmas and Rosseland approximation %J Séminaire Laurent Schwartz — EDP et applications %Z talk:10 %D 2016-2017 %P 1-10 %I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.100/ %R 10.5802/slsedp.100 %G en %F SLSEDP_2016-2017____A10_0
Nathalie Ayi. Stochastic discrete velocity averaging lemmas and Rosseland approximation. Séminaire Laurent Schwartz — EDP et applications (2016-2017), Talk no. 10, 10 p. doi : 10.5802/slsedp.100. https://proceedings.centre-mersenne.org/articles/10.5802/slsedp.100/
[1] A. Alonso, T. Goudon, and A. Vavasseur. Damping of particles interacting with a vibrating medium. Ann. IHP Anal. Non Lin., 2017. | DOI | MR | Zbl
[2] N. Ayi and T. Goudon. Regularity of velocity averages for transport equations on random discrete velocity grids. to appear in Analysis PDE, 2017. | DOI | MR | Zbl
[3] C. Bardos, F. Golse, B. Perthame, and R. Sentis. The nonaccretive radiative transfer equations: existence of solutions and Rosseland approximation. J. Funct. Anal., 77(2):434–460, 1988. | DOI | MR | Zbl
[4] F. Berthelin and S. Junca. Averaging lemmas with a force term in the transport equation. J. Math. Pures Appl., 93(2):113–131, 2019. | DOI | MR | Zbl
[5] R. J. DiPerna and P.-L. Lions. Global weak solutions of Vlasov–Maxwell systems. Comm. Pure Appl. Math., 42(6):729–757, 1989. | DOI | MR | Zbl
[6] R. J. DiPerna and P.-L. Lions. On the Cauchy problem for Boltzmann equations: global existence and weak stability. Ann. of Math. (2), 130(2):321–366, 1989. | DOI | MR | Zbl
[7] R. J. DiPerna, P.-L. Lions, and Y. Meyer. regularity of velocity averages. Ann. Inst. H. Poincaré Anal. Non Linéaire, 8(3-4):271–287, 1991. | DOI | Numdam | MR | Zbl
[8] F. Golse. From kinetic to macroscopic models. In B. Perthame and L. Desvillettes, editors, Kinetic equations and asymptotic theory, volume 4 of Series in Appl. Math, pages 41–121. Gauthier-Villars, 2000.
[9] F. Golse, P.-L. Lions, B. Perthame, and R. Sentis. Regularity of the moments of the solution of a transport equation. J. Funct. Anal., 76:110–125, 1988. | DOI | MR | Zbl
[10] F. Golse and L. Saint-Raymond. Velocity averaging in for the transport equation. C. R. Math. Acad. Sci. Paris, 334(7):557–562, 2002. | DOI | MR | Zbl
[11] F. Golse and L. Saint-Raymond. The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels. Invent. Math., 155(1):81–161, 2004. | DOI | MR | Zbl
[12] T. Goudon. Intégration. Intégrale de Lebesgue et introduction à l’analyse fonctionnelle. Références Sciences. Ellipses, 2011. | Zbl
[13] S. Mischler. Convergence of discrete-velocity schemes for the Boltzmann equation. Arch. Rational Mech. Anal., 140:53–77, 1997. | DOI | MR | Zbl
[14] B. Perthame and P. E. Souganidis. A limiting case for velocity averaging. Ann. Sci. École Norm. Sup. (4), 31(4):591–598, 1998. | DOI | Numdam | MR | Zbl
[15] L. Saint Raymond. Hydrodynamic limits of the Boltzmann equation, volume 1971 of Lect. Notes in Math. Springer, 2009. | DOI | Zbl
[16] E. Tadmor and T. Tao. Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs. Comm. Pure Appl. Math., 60(10):1488–1521, 2007. | DOI | MR | Zbl
[17] C. Villani. Limites hydrodynamiques de l’équation de Boltzmann (d’après C. Bardos, F. Golse, C. D. Levermore, P.-L. Lions, N. Masmoudi, L. Saint-Raymond). In Séminaire Bourbaki, Vol. 2000/2001, volume 282 of Astérisque, pages 365–405, Exp. No. 893. Soc. Math. France, 2002. | Numdam
Cited by Sources: