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High-order statistics for the random paraxial

wave equation

Josselin Garnier∗

Abstract

We consider wave propagation in random media in the paraxial regime.
We show how to solve the equations for the second- and fourth-order mo-
ment of the field in the regime where the correlation length of the medium
is smaller than the initial beam width. We quantify the scintillation of
the transmitted field and the statistical stability of the Wigner transform.
We finally discuss a few applications to correlation-based communication
and imaging methods.

1 Wave propagation in random media

In this section we briefly describe how to derive the mathematically tractable
Itô-Schrödinger model from the wave equation in a random medium. We con-
sider the three-dimensional scalar wave equation:

1

c2(~x)

∂2u

∂t2
(t, ~x)−∆~xu(t, ~x) = F (t, ~x). (1)

Here the source emits a time-harmonic signal and it is localized in the plane
z = 0:

F (t, ~x) = δ(z)f(x)e−iωt with ~x = (x, z), (2)

and the speed of propagation is spatially heterogeneous

1

c2(~x)
=

1

c2o

(
1 + µ(~x)

)
, (3)

where µ is a zero-mean stationary random process with ergodic properties in
the z-direction.

The time-harmonic field û such that u(t, ~x) = û(~x)e−iωt is solution of the
random Helmholtz equation

(∂2z + ∆⊥)û+
ω2

c2o

(
1 + µ(x, z)

)
û = −δ(z)f(x),
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where ∆~x = ∆⊥+ ∂2z . The function φ̂ (slowly-varying envelope of a plane wave
going along the z-axis) defined by

û(x, z) =
ico
2ω

eiωz/co φ̂
(
x, z

)
(4)

satisfies

∂2z φ̂+

(
2i
ω

co
∂zφ̂+ ∆⊥φ̂+

ω2

c2o
µ
(
x, z

)
φ̂

)
= 2i

ω

co
δ(z)f(x). (5)

In the paraxial regime “λ � lc, ro � L” (which means, the wavelength λ =
2πco/ω is much smaller than the correlation radius lc of the medium and the
radius ro of the source, which are themselves much smaller than the typical
propagation distance L) the forward-scattering approximation in direction z is

valid and φ̂ satisfies the Itô-Schrödinger equation [9]

dzφ̂ =
ico
2ω

∆⊥φ̂dz +
iω

2co
φ̂ ◦ dB(x, z), φ̂(z = 0,x) = f(x), (6)

where ◦ stands for the Stratonovich integral, B(x, z) is a Brownian field, that
is a Gaussian process with mean zero and covariance

E[B(x, z)B(x′, z′)] = γ(x− x′) min(z, z′)

with

γ(x) =

∫ ∞

−∞
E[µ(0, 0)µ(x, z)]dz. (7)

Remark: Existence, uniqueness and continuity of solutions to the Itô-Schrödinger
model (6) are established in [5]. The proof of the convergence of the solu-
tion to (5) to the solution to (6) is in [9]. More precisely, the paraxial regime
“λ� lc, ro � L” corresponds to the scaled regime

ω → ω

ε4
, µ(x, z)→ ε3µ

(
x/ε2, z/ε2

)
, f(x)→ f

(
x/ε2

)
,

and the convergence in distribution of the solution to the scaled version of (5) to
the solution of the Itô-Schrödinger equation (6) is obtained in the limit ε→ 0.

2 Statistics of the wave field

In this section we describe how to compute the second- and fourth-order mo-
ments of the wave field. By Itô’s formula and (6), the coherent (or mean) wave
satisfies the Schrödinger equation with homogeneous damping:

∂

∂z
E[φ̂] =

ico
2ω

∆⊥E[φ̂]− ω2γ(0)

8c2o
E[φ̂], (8)

and therefore E
[
φ̂(x, z)

]
= φ̂0(x, z) exp(−z/Zsca), where φ̂0 is the solution in the

homogeneous medium and Zsca = 8c2o/[γ(0)ω2]. The coherent wave amplitude
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decays exponentially with the propagation distance and the characteristic decay
length is the scattering mean free path Zsca. This result shows that any coherent
imaging or communication method fails in random media when the propagation
distance is larger than the scattering mean free path [8].

The mean Wigner transform defined by

Wm(x, ξ, z) =

∫

R2

exp
(
− iξ · y

)
E
[
φ̂
(
x+

y

2
, z
)
φ̂
(
x− y

2
, z
)]
dy (9)

is the angularly-resolved mean wave energy density. By Itô’s formula and (6),
it solves the radiative transport equation

∂Wm

∂z
+
co
ω
ξ · ∇xWm =

ω2

4(2π)2c2o

∫

R2

γ̂(κ)
[
Wm(ξ − κ)−Wm(ξ)

]
dκ, (10)

starting from Wm(x, ξ, z = 0) = W0(x, ξ), the Wigner transform of the initial
field f . γ̂ is the Fourier transform of γ and determines the scattering cross
section of the radiative transport equation. This result shows that the fields
observed at nearby points are correlated and their correlations contain informa-
tion about the medium. Accordingly, one should use local cross correlations for
imaging and communication in random media [2, 3].

In order to quantify the stability of correlation-based imaging methods, one
needs to evaluate variances of empirical correlations, which involves the fourth-
order moment:

M4(r1, r2, q1, q2, z) = E
[
φ̂
(r1 + r2 + q1 + q2

2
, z
)
φ̂
(r1 − r2 + q1 − q2

2
, z
)

×φ̂
(r1 + r2 − q1 − q2

2
, z
)
φ̂
(r1 − r2 − q1 + q2

2
, z
)]
. (11)

By Itô’s formula and (6), it satisfies the Schrödinger-type equation

∂M4

∂z
=
ico
ω

(
∇r1 · ∇q1 +∇r2 · ∇q2

)
M4 +

ω2

4c2o
U4(q1, q2, r1, r2)M4, (12)

with the generalized potential

U4(q1, q2, r1, r2) = γ(q2 + q1) + γ(q2 − q1) + γ(r2 + q1) + γ(r2 − q1)

− γ(q2 + r2)− γ(q2 − r2)− 2γ(0). (13)

These moment equations have been known for a long time [13]. If we take the
Fourier transform:

M̂4(ξ1, ξ2, ζ1, ζ2, z) =

∫∫∫∫

R8

M4(q1, q2, r1, r2, z)

× exp
(
− iq1 · ξ1 − ir1 · ζ1 − iq2 · ξ2 − ir2 · ζ2

)
dr1dr2dq1dq2,

then it is possible to prove [11] that in the regime “λ � lc � ro � L” the

function M̂4 has the form

M̂4(ξ1, ξ2, ζ1, ζ2, z) = Φ(K,A, f)(ξ1, ξ2, ζ1, ζ2, z), (14)

Exp. no IX— High-order statistics for the random paraxial wave equation
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where the nonlinear function Φ is explicit [11, Proposition 1] with

K(z) = (2π)8 exp
(
− ω2

2c2o
γ(0)z

)
, (15)

A(ξ, ζ, z) =
1

2(2π)2

∫

R2

[
exp

( ω2

4c2o

∫ z

0

γ
(
x+

coζ

ω
z′
)
dz′
)
− 1
]

exp
(
− iξ · x

)
dx,

(16)

and the approximation holds true in C([0, Z], L1(R2 × R2 × R2 × R2)). These
results can now be used to discuss a wide range of applications in imaging and
communication.

3 The scintillation index

In this section we study the intensity fluctuations and characterize the scintilla-
tion index of the wave field, which quantifies the relative intensity fluctuations.
It is a fundamental physical quantity associated for instance with light propaga-
tion through the atmosphere [13]. The intensity correlation function is usually
defined by [13, Eq. (20.125)]:

Γ(4)(x,y, z) = E
[∣∣φ̂
(
x+

y

2
, z
)∣∣2∣∣φ̂

(
x− y

2
, z
)∣∣2
]
. (17)

When the initial beam has a Gaussian profile

f(x) = exp
(
− |x|

2

r2o

)
, (18)

we obtain from (14) in the regime “λ� lc � ro � L” that:

Γ(4)(x,y, z) = − exp
(
− ω2γ(0)z

2c2o

)
exp

(
− 2|x|2

r2o

)

+
∣∣∣ r

2
o

4π

∫
exp

( ω2

4c2o

∫ z

0

γ
(
ζ
coz
′

ω

)
− γ(0)dz′ − r2o|ζ|2

4
+ iζ · x

)
dζ
∣∣∣
2

+
∣∣∣ r

2
o

4π

∫
exp

( ω2

4c2o

∫ z

0

γ
(
ζ
coz
′

ω
− y

)
− γ(0)dz′ − r2o|ζ|2

4
+ iζ · x

)
dζ
∣∣∣
2

. (19)

For comparison, the mutual coherence function defined by

Γ(2)(x,y, z) = E
[
φ̂
(
x+

y

2
, z
)
φ̂
(
x− y

2
, z
)]

(20)

can be obtained by solving (10) and it is given by, in the same regime:

Γ(2)(x,y, z) =
r2o
4π

∫
exp

( ω2

4c2o

∫ z

0

γ
(
ζ
coz
′

ω
− y

)
− γ(0)dz′ − r2o|ζ|2

4
+ iζ · x

)
dζ.

(21)
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Before giving the result about the scintillation index, we first address the
case of a plane wave, which corresponds to the limit case ro →∞ and which is
addressed in [10] by taking first the limit ro → +∞ and then λ� lc � L, and
in [11] by taking first the limit λ� lc � ro � L and then ro →∞. It turns out
that the two results are identical, which shows that the limits are exchangeable:

lim
ro→∞

Γ(2)(x,y, z) = exp
(ω2(γ(y)− γ(0))z

4c2o

)
,

moreover, by (19)

lim
ro→∞

Γ(4)(x,y, z) = 1− exp
(
− ω2γ(0)z

2c2o

)
+ exp

(ω2(γ(y)− γ(0))z

2c2o

)
.

As discussed in [10], this result shows in particular that the scintillation index,
that is, the variance of the intensity divided by the square of the mean intensity
as defined below in (22), is close to one when z � Zsca.

We next consider the scintillation index in the case of an initial Gaussian
beam (18) with radius ro. The scintillation index is usually defined as the square
coefficient of variation of the intensity [13, Eq. (20.151)]:

S(x, z) =
E
[∣∣φ̂(x, z)

∣∣4]− E
[∣∣φ̂(x, z)

∣∣2]2

E
[∣∣φ̂(x, z)

∣∣2]2 . (22)

By the expressions (19) and (21) we can describe the scintillation index of the
transmitted beam as follows [11].

Proposition 3.1. In the regime “λ � lc � ro � L” the scintillation index
(22) has the following expression:

S(x, z) = 1− exp
(
− 2|x|2/r2o

)
∣∣∣ 1
4π

∫
exp

(
ω2

4c2o

∫ z
0
γ
(
v coz

′
ωro

)
dz′ − |v|24 + iv · xro

)
dv
∣∣∣
2 . (23)

Let us consider the following form of the covariance function of the medium
fluctuations:

γ(x) = γ(0)γ̃
( |x|
`c

)
,

with γ̃(0) = 1 and the width of the function x → γ̃(x) is of order one. For
instance, we may consider γ̃(x) = exp(−x2). Then the scintillation index at the
beam center x = 0 is

S(z,0) = 1− 4∣∣∣
∫∞
0

exp
(

2z
Zsca

∫ 1

0
γ̃
(
v z
Zc
s
)
ds− v2

4

)
vdv
∣∣∣
2 , (24)

which is a function of z/Zsca and z/Zc only (or, equivalently, a function of z/Zsca

and Zc/Zsca only), where Zc = ωro`c/co is the typical propagation distance for

Exp. no IX— High-order statistics for the random paraxial wave equation
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Figure 1: Scintillation index at the beam center (24) as a function of the prop-
agation distance for different values of Zsca and Zc. Here γ̃(x) = exp(−x2).

which diffractive effects are of order one, as shown in [9, Eq. (4.4)]. The function
(24) is plotted in Figure 1 in the case of Gaussian correlations for the medium
fluctuations. It is interesting to note that, even if the propagation distance is
larger than the scattering mean free path, the scintillation index can be smaller
than one if Zc is small compared to Zsca.

In order to get more explicit expressions that facilitate interpretation of the
results let us assume that γ(x) is smooth and can be expanded as

γ(x) = γ(0)
(

1− |x|
2

`2c
+ o
( |x|2
`2c

))
, x→ 0. (25)

When scattering is strong in the sense that the propagation distance is larger
than the scattering mean free path z � Zsca, Eqs. (19) and (21) can be simpli-
fied:

Γ(2)(x,y, z) =
r2o

r2o + γ(0)z3

3`2c

× exp
(
− |x|2

r2o + γ(0)z3

3`2c

− ω2γ(0)z|y|2
4c2o`

2
c

r2o + γ(0)z3

12`2c

r2o + γ(0)z3

3`2c

+ i
ωγ(0)z2x · y

2co`2c(r2o + γ(0)z3

3`2c
)

)
, (26)

Γ(4)(x,y, z) =
r4o(

r2o + γ(0)z3

3`2c

)2

× exp
(
− 2|x|2

r2o + γ(0)z3

3`2c

)[
1 + exp

(
− ω2γ(0)z|y|2

2c2o`
2
c

r2o + γ(0)z3

12`2c

r2o + γ(0)z3

3`2c

)]
. (27)

This shows that, when z � Zsca:

Josselin Garnier
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- The beam radius is Rz with

R2
z = r2o +

γ(0)z3

3`2c
. (28)

- The correlation radius of the intensity distribution is ρz with

ρ2z =
2c2o`

2
c

2ω2γ(0)z

r2o + γ(0)z3

3`2c

r2o + γ(0)z3

12`2c

, (29)

which is of the same order as the correlation radius of the field (compare the
y-dependence of (26) and (27)).
- The scintillation index is equal to one:

S(x, z) =
Γ(4)(x,0, z)− Γ(2)(x,0, z)2

Γ(2)(x,0, z)2
= 1. (30)

This observation is consistent with the physical intuition that, in the strongly
scattering regime z/Zsca � 1, the wave field is conjectured to have zero-mean
complex circularly symmetric Gaussian statistics, and therefore the intensity is
expected to have exponential (or Rayleigh) distribution [6, 13], in agreement
with (30).

4 Stability of the Wigner transform

In this section we give an explicit characterization of the signal-to-noise ratio of
the Wigner transform. The Wigner transform is a fundamental quadratic form
of the field that is useful in the context of analysis of problems involving paraxial
or Schrödinger-type equations, for instance time-reversal problems. The Wigner
transform of the wave field is defined by

W (x, ξ, z) =

∫
exp

(
− iξ · y

)
φ̂
(
x+

y

2
, z
)
φ̂
(
x− y

2
, z
)
dy. (31)

It can be interpreted as the angularly-resolved wave energy density (note, how-
ever, that it is real-valued but not always non-negative valued). The ξ-dependence
of the Wigner transform depends on the angular diversity of the initial beam
but also on the scattering by the random medium, which dramatically broadens
it because the correlation length of the medium is smaller than the initial beam
width in our regime of interest “λ� lc � ro � L”. As a result the expectation
of the Wigner transform is:

E[W (x, ξ, z)] =
r2o
4π

∫∫
exp

(
− r2o|ζ|2

4
+ iζ · x− iξ ·

(
y + ζ

coz

ω

))

× exp
( ω2

4c2o

∫ z

0

γ
(
y + ζ

coz
′

ω

)
− γ(0)dz′

)
dζdy, (32)

Exp. no IX— High-order statistics for the random paraxial wave equation
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which is the solution of (10). More precisely, the mean Wigner transform can
be split into two pieces: a narrow cone and a broad cone in ξ:

E[W (x, ξ, z)] =
K(z)1/2

(2π)2
δ(ξ) exp

(
− |x|

2

r2o

)

+
r2oK(z)1/2

(2π)3

∫
exp

(
− r2o|ζ|2

4
+ iζ ·

(
x− ξ coz

ω

))
A(ξ, ζ, z)dζ. (33)

The narrow cone is the contribution of the coherent transmitted wave com-
ponents and it decays exponentially with the propagation distance (see the
expression (15) for K(z)). The broad cone is the contribution of the incoher-
ent scattered waves and it becomes dominant when the propagation distance
becomes large z � Zsca.

It is known that the Wigner transform is not statistically stable, and that it
is necessary to smooth it (that is to say, to convolve it with a kernel) to get a
quantity that can be measured in a statistically stable way (that is to say, the
smoothed Wigner transform for one typical realization is approximately equal to
its expected value) [1, 17]. Our goal in this section is to quantify this statistical
stability.

Let us consider two positive parameters rs and ξs and define the smoothed
Wigner transform:

Ws(x, ξ, z) =
1

(2π)2r2s ξ
2
s

∫∫
W (x− x′, ξ − ξ′, z) exp

(
− |x

′|2
2r2s

− |ξ
′|2

2ξ2s

)
dx′dξ′.

(34)
The expectation of the smoothed Wigner transform is:

E
[
Ws(x, ξ, z)

]
=
r2o
4π

∫∫
exp

(
− r2o|ζ|2

4
− ξ2s |y + ζ cozω |2

2
− iξ ·

(
y + ζ

coz

ω

))

× exp
(
iζ · x+

ω2

4c2o

∫ z

0

γ
(
y + ζ

coz
′

ω

)
− γ(0)dz′

)
dζdy. (35)

It can also be written as follows [11].

Proposition 4.1. The expectation of the smoothed Wigner transform (34) is,
in the regime “λ� lc � ro � L”:

E
[
Ws(x, ξ, z)

]
=
K(z)1/2

(2π)3ξ2s
exp

(
− |ξ|

2

2ξ2s

)
exp

(
− |x|

2

r2o

)

+
K(z)1/2r2o

(2π)4ξ2s

∫∫
A(ξ′, ζ, z) exp

(
− r2o|ζ|2

4
− |ξ

′ − ξ|2
2ξ2s

+ iζ ·
(
x− ξ′ coz

ω

))
dζdξ′,

(36)

where K and A are defined by (15) and (16).

The first term in (36) is a narrow cone in ξ around ξ = 0 corresponding to
coherent wave components and the second term is a broad cone in ξ correspond-
ing to incoherent wave components. Note that the expectation of the smoothed

Josselin Garnier
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Wigner transform is independent on rs as the smoothing in x vanishes in the
regime “λ � lc � ro � L”. However the smoothing in x plays an important
role in the control of the fluctuations of the Wigner transform. We can ana-
lyze the variance of the smoothed Wigner transform and its dependence on the
smoothing parameters rs and ξs [11].

Proposition 4.2. The second moment of the smoothed Wigner transform (34)
is, in the regime “λ� lc � ro � L”:

E
[
Ws(x, ξ, z)

2
]

=
K(z)

(2π)6ξ4s
exp

(
− |ξ|

2

ξ2s

)
exp

(
− 2|x|2

r2o

)

+
r4oK(z)

(2π)8ξ4s

∫∫
dξ1dζ1e

iζ1·(2x− cozω ξ1)−
r2o|ζ1|2

2 − |ξ1−2ξ|2
4ξ2s

×
{

4e
− |ξ1|

2

4ξ2s

∫
e−i

coz
ω ξ1·ζ2−

r2o|ζ2|2
2 A(ξ1, ζ2 + ζ1, z)dζ2

+

∫∫
e
− |ξ2|

2

4ξ2s
−i cozω ξ2·ζ2−

r2o|ζ2|2
2 A

(ξ2 + ξ1
2

, ζ2 + ζ1, z
)

×A
(ξ2 − ξ1

2
, ζ2 − ζ1, z

)
dξ2dζ2

+4e−r
2
s |ξ1|2

∫
e−i

coz
ω ξ1·ξ2−

r2o|ξ2|
2

2 A(ξ1, ξ2 + ζ1, z)dξ2

+

∫∫
e−r

2
s |ζ2|2−i cozω ξ2·ζ2−

r2o|ξ2|
2

2 A
(
z,
ζ2 + ξ1

2
, ξ2 + ζ1

)

×A
(ζ2 − ξ1

2
, ξ2 − ζ1, z

)
dξ2dζ2

}
. (37)

This is an exact expression but, as it involves four-dimensional integrals, it
is complicated to interpret it. This expression becomes simple in the strongly
scattering regime z � Zsca, because then A(ξ, ζ, z) takes a Gaussian form and
all integrals can be evaluated. To get more explicit expressions in the discussion
of the results we here again assume that γ(x) can be expanded as (25). When
z � Zsca, we have

E
[
Ws(x, ξ, z)

]
=

4πc2o`
2
c

ω2γ(0)z

r2o

(r2o + γ(0)z3

12`2c
)(1 +

2c2oξ
2
s `

2
c

ω2γ(0)z ) +
c2oz

2ξ2s
2ω2

× exp

(
−

∣∣∣x− cozξ

2ω(1+
2c2oξ

2
s `

2
c

ω2γ(0)z
)

∣∣∣
2

r2o + γ(0)z3

12`2c
+

c2oz
2ξ2s

2ω2

1+
2c2oξ

2
s `

2
c

ω2γ(0)z

− |ξ|2
ω2γ(0)z
c2o`

2
c

+ 2ξ2s

)
(38)

and

E
[
Ws(x, ξ, z)

2
]

=E
[
Ws(x, ξ, z)

]2

1 +

(r2o + γ(0)z3

12`2c
)(1 +

2c2oξ
2
s `

2
c

ω2γ(0)z ) +
c2oz

2ξ2s
2ω2

(r2o + γ(0)z3

12`2c
)(4r2s ξ

2
s +

2c2oξ
2
s `

2
c

ω2γ(0)z ) +
c2oz

2ξ2s
2ω2


 .

(39)
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Figure 2: Contour levels of the coefficient of variation (41) of the smoothed
Wigner transform. Here rs = rs/ρz and ξs = ξsρz. The contour level 1 is
2ξsrs = 1.

The coefficient of variation Cs of the smoothed Wigner transform, which
characterizes its statistical stability, is defined by:

Cs(x, ξ, z) =

√
E[Ws(x, ξ, z)2]− E[Ws(x, ξ, z)]2

E[Ws(x, ξ, z)]
. (40)

We then get the following expression for the coefficient of variation in the
strongly scattering regime z � Zsca [11].

Proposition 4.3. Under the same hypotheses as in Propositions 4.1 and 4.2,
if additionally z � Zsca and γ can be expanded as (25), then the coefficient of
variation of the smoothed Wigner transform (34) satisfies:

Cs(x, ξ, z) =


 (r2o + γ(0)z3

12`2c
)(1 +

2c2oξ
2
s `

2
c

ω2γ(0)z ) +
c2oz

2ξ2s
2ω2

(r2o + γ(0)z3

12`2c
)(4r2s ξ

2
s +

2c2oξ
2
s `

2
c

ω2γ(0)z ) +
c2oz

2ξ2s
2ω2




1/2

=




1
ξ2s ρ

2
z

+ 1

4r2s
ρ2z

+ 1




1/2

,

(41)
where ρz is the correlation radius (29).

Note that the coefficient of variation becomes independent of x and ξ.
Eq. (41) is a simple enough formula to help determining the smoothing pa-
rameters ξs and rs that are needed to reach a given value for the coefficient of
variation. The coefficient of variation is plotted in Figure 2, which exhibits the
line 2ξsrs = 1 separating the two regions where the coefficient of variation is
larger or smaller than one:

• For 2ξsrs = 1, we have Cs(x, ξ, z) = 1.

• For 2ξsrs < 1 (resp. > 1) we have Cs(x, ξ, z) > 1 (resp. < 1).
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• The curve 2ξsrs = 1 determines the region where the coefficient of variation
of Ws(x, ξ, z) is smaller or larger than one (in this regime).

The critical value rs = 1/(2ξs) is indeed special. In this case, the smoothed
Wigner transform (34) can be written as the double convolution of the Wigner

transform W of the random field φ̂(·, z) with the Wigner transform

Wg(x, ξ) =

∫
exp

(
− iξ · y

)
φ̂g
(
x+

y

2

)
φ̂g
(
x− y

2

)
dy (42)

of the Gaussian state
φ̂g(x) = exp

(
− ξ2s |x|2

)
, (43)

since we have

Wg(x, ξ) =
2π

ξ2s
exp

(
− 2ξ2s |x|2 −

|ξ|2
2ξ2s

)
,

and therefore

Ws(x, ξ, z) =
4ξ2s

(2π)3

∫∫
W (x− x′, ξ − ξ′, z)Wg(x′, ξ′)dx′dξ′, (44)

for rs = 1/(2ξs). It is known that the convolution of a Wigner transform with a
kernel that is itself the Wigner transform of a function (such as Wg) is nonneg-
ative real valued (the smoothed Wigner transform obtained with the Gaussian
Wg is called Husimi function) [4, 14]. This can be shown easily in our case as
the smoothed Wigner transform can be written as

Ws(x, ξ, z) =
2ξ2s
π

∣∣∣
∫

exp
(
iξ · x′

)
φ̂g(x′)φ̂(x− x′, z)dx′

∣∣∣
2

, (45)

for rs = 1/(2ξs). From this representation formula of Ws valid for rs = 1/(2ξs),

we can see that it is the square modulus of a linear functional of φ̂(·, z). The

physical intuition that φ̂(·, z) has circularly symmetric complex Gaussian statis-
tics in strongly scattering media then predicts that Ws(x, ξ, z) should have an
exponential (or Rayleigh) distribution, because the sum of the squares of two
independent real-valued Gaussian random variables has an exponential distri-
bution. This is indeed consistent with our theoretical finding that Cs = 1 for
rs = 1/(2ξs). In fact the situation with complex scattering giving a field that
has centered circularly symmetric Gaussian statistics is exactly what motivates
the name “scintillation regime” with unit relative intensity fluctuations.

If rs > 1/(2ξs), by observing that

exp
(
− |x|

2

2r2s

)
= Ψ(x) ∗x exp

(
− 2ξ2s |x|2

)
,

where ∗x stands for the convolution product in x:

Ψ(x) ∗x f(x) =

∫
Ψ(x− x′)f(x′)dx′,
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and the function Ψ is defined by

Ψ(x) =
8ξ4s r

2
s

π(4ξ2s r
2
s − 1)

exp
(
− 2ξ2s |x|2

(4ξ2s r
2
s − 1)

)
, (46)

we observe that the smoothed Wigner transform (34) can be expressed as:

Ws(z,x, ξ) = Ψ(x) ∗x
(

2ξ2s
π

∣∣∣
∫

exp
(
iξ · x′

)
φ̂g(x′)φ̂(x− x′, z)dx′

∣∣∣
2
)
, (47)

for rs > 1/(2ξs). From this representation formula for Ws valid for rs > 1/(2ξs),
we can see that it is nonnegative valued and that it is a local average of (45),
which has a unit coefficient of variation in the strongly scattering scintillation
regime. That is why the coefficient of variation of the smoothed Wigner trans-
form is smaller than one when rs > 1/(2ξs).

Finally, it is possible to take rs = 0 in (34), which corresponds to the absence
of smoothing in x:

Ws(x, ξ, z) =
1

2πξ2s

∫
W (x, ξ − ξ′, z) exp

(
− |ξ

′|2
2ξ2s

)
dξ′,

for rs = 0. We then get

Var
(
Ws(x, ξ, z)

)

=

(
4πc2or

2
o`

2
c

ω2γ(0)z

)2
(

(r2o + γ(0)z3

12`2c
)(1 +

2c2oξ
2
s `

2
c

ω2γ(0)z ) +
c2oz

2ξ2s
2ω2

)(
(r2o + γ(0)z3

12`2c
)(

2c2oξ
2
s `

2
c

ω2γ(0)z ) +
c2oz

2ξ2s
2ω2

)

× exp

(
−

2
∣∣∣x− cozξ

2ω(1+
2c2oξ

2
s `

2
c

ω2γ(0)z
)

∣∣∣
2

r2o + γ(0)z3

12`2c
+

c2oz
2ξ2s

2ω2

1+
2c2oξ

2
s `

2
c

ω2γ(0)z

− 2|ξ|2
ω2γ(0)z
c2o`

2
c

+ 2ξ2s

)

and
Cs(x, ξ, z) =

√
1 + (ξsρz)−2,

for rs = 0. If, additionally, we let ξs →∞, then we find

lim
ξs→∞

ξ2s
2π

E
[
Ws(x, ξ, z)

]
=

r2o

r2o + γ(0)z3

3`2c

exp
(
− |x|2

r2o + γ(0)z3

3`2c

)
,

lim
ξs→∞

( ξ2s
2π

)2
Var
(
Ws(x, ξ, z)

)
=
( r2o

r2o + γ(0)z3

3`2c

)2
exp

(
− 2|x|2

r2o + γ(0)z3

3`2c

)
,

and also
lim
ξs→∞

Cs(x, ξ, z) = 1,

for rs = 0. These results are consistent with formulas (26-27) (with y = 0),
formula (30), and the fact that

∣∣φ̂(x, z)
∣∣2 =

1

(2π)2

∫
W (x, ξ′, z)dξ′ = lim

ξs→∞
ξ2s
2π
Ws(x, ξ, z) |rs=0 .
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5 Applications to imaging and communication

We finally remark that the results reported here can be useful in the analysis
of ghost imaging experiments [19], enhanced focusing [20] and super-resolution
imaging problems [15], and intensity correlation-based imaging and communi-
cation [16, 18].

Ghost imaging is a fascinating recent imaging methodology. It can be inter-
preted as a correlation-based imaging technique since it gives an image of an
object by correlating the intensities measured by two detectors, a high-resolution
detector that does not view the object and a low-resolution detector that does
view the object. The resolution of the image depends on the coherence proper-
ties of the sources used to illuminate the object, and on the scattering properties
of the medium. This problem can be understood at the mathematical level by
using the results presented in [7].

Enhanced focusing refers to schemes for communication and imaging in a
case where a reference signal propagating through the random medium is avail-
able. This information can be used to design an optimal probe that focuses
tightly at the desired target point. How to optimally design and analyze such
schemes, given the limitations of the transducers and so on, can be analyzed us-
ing the moment theory presented in [12]. More generally super resolution refers
situations where one tries to go beyond the classic diffraction limited resolution
in imaging systems.

Intensity correlations is a recently proposed scheme for communication and
imaging in the optical regime that is based on using cross corrections of in-
tensities. This is a promising scheme for communication and imaging through
relatively strong clutter. By using the correlation of the intensity or speckle for
different incoming angles or different positions of the source one can get spa-
tial information about the source. The idea of using the information about the
statistical structure of speckle to enhance signaling is very interesting and cor-
roborates the idea that modern schemes for communication and imaging require
a mathematical theory for analysis of high-order moments.

The results reported here have already opened the mathematical analysis
of important imaging problems and we believe that many more problems than
those mentioned here will benefit from the results regarding the fourth mo-
ments. In fact, enhanced transducer technology and sampling schemes allow
for using finer aspects of the wave field involving second- and fourth-order mo-
ments and in such complex cases a rigorous mathematical analysis is important
to support, complement, or sometimes disprove, statements based on physical
intuition alone.
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