In this note we consider a strictly convex domain of dimension with smooth boundary and we describe the dispersive and Strichartz estimates for the wave equation with the Dirichlet boundary condition. We obtain counterexamples to the optimal Strichartz estimates of the flat case; we also discuss the some results concerning the dispersive estimates.
@incollection{JEDP_2010____A11_0, author = {Oana Ivanovici}, title = {Dispersive and {Strichartz} estimates for the wave equation in domains with boundary}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {11}, pages = {1--19}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2010}, doi = {10.5802/jedp.68}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.68/} }
TY - JOUR AU - Oana Ivanovici TI - Dispersive and Strichartz estimates for the wave equation in domains with boundary JO - Journées équations aux dérivées partielles PY - 2010 SP - 1 EP - 19 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.68/ DO - 10.5802/jedp.68 LA - en ID - JEDP_2010____A11_0 ER -
%0 Journal Article %A Oana Ivanovici %T Dispersive and Strichartz estimates for the wave equation in domains with boundary %J Journées équations aux dérivées partielles %D 2010 %P 1-19 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.68/ %R 10.5802/jedp.68 %G en %F JEDP_2010____A11_0
Oana Ivanovici. Dispersive and Strichartz estimates for the wave equation in domains with boundary. Journées équations aux dérivées partielles (2010), article no. 11, 19 p. doi : 10.5802/jedp.68. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.68/
[1] Matthew D. Blair; Hart F. Smith; Christopher D. Sogge Strichartz estimates for the wave equation on manifolds with boundary, to appear in Ann.Inst.H.Poincaré, Anal.Non Liréaire | Numdam | MR
[2] Nicolas Burq; Patrick Gérard; Nicolay Tzvetkov Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., Volume 126 (2004) no. 3, pp. 569-605 | MR | Zbl
[3] Nicolas Burq; Gilles Lebeau; Fabrice Planchon Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc., Volume 21 (2008) no. 3, pp. 831-845 | MR
[4] E. B. Davies The functional calculus, J. London Math. Soc. (2), Volume 52 (1995) no. 1, pp. 166-176 | MR | Zbl
[5] Gregory Eskin Parametrix and propagation of singularities for the interior mixed hyperbolic problem, J. Analyse Math., Volume 32 (1977), pp. 17-62 | MR | Zbl
[6] J. Ginibre; G. Velo Generalized Strichartz inequalities for the wave equation, Partial differential operators and mathematical physics (Holzhau, 1994) (Oper. Theory Adv. Appl.), Volume 78, Birkhäuser, Basel, 1995, pp. 153-160 | MR
[7] Daniel Grieser bounds for eigenfunctions and spectral projections of the Laplacian near concave boundaries. Thesis, UCLA, 1992 (http://www.staff.uni-oldenburg.de/daniel.grieser/wwwpapers/diss.pdf)
[8] Oana Ivanovici Counter example to Strichartz estimates for the wave equation in domains, 2008 (to appear in Math. Annalen, arXiv:math/0805.2901) | arXiv
[9] Oana Ivanovici Counterexamples to the Strichartz estimates for the wave equation in domains II, 2009 http://www.citebase.org/abstract?id=oai:arXiv.org:0903.0048 (arXiv:math/0903.0048) | MR
[10] Oana Ivanovici; Fabrice Planchon Square function and heat flow estimates on domains, 2008 (arXiv:math/0812.2733) | arXiv
[11] L. V. Kapitanskiĭ Some generalizations of the Strichartz-Brenner inequality, Algebra i Analiz, Volume 1 (1989) no. 3, pp. 127-159 | MR | Zbl
[12] Markus Keel; Terence Tao Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980 | MR | Zbl
[13] Gilles Lebeau Estimation de dispersion pour les ondes dans un convexe, Journées “Équations aux Dérivées Partielles” (Evian, 2006), 2006 (see http://www.numdam.org/numdam-bin/fitem?id=JEDP_2006____A7_0) | Numdam
[14] Hans Lindblad; Christopher D. Sogge On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., Volume 130 (1995) no. 2, pp. 357-426 | MR | Zbl
[15] Francis Nier A variational formulation of Schrödinger-Poisson systems in dimension , Comm. Partial Differential Equations, Volume 18 (1993) no. 7-8, pp. 1125-1147 | MR | Zbl
[16] A.N. Oraevsky Whispering-gallery waves, Quantum Electronics, Volume 32 (2002) no. 5, pp. 377-400
[17] Hart F. Smith A parametrix construction for wave equations with coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 3, pp. 797-835 | Numdam | MR | Zbl
[18] Hart F. Smith; Christopher D. Sogge On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc., Volume 8 (1995) no. 4, pp. 879-916 | MR | Zbl
[19] Hart F. Smith; Christopher D. Sogge On the norm of spectral clusters for compact manifolds with boundary, Acta Math., Volume 198 (2007) no. 1, pp. 107-153 | MR | Zbl
[20] Robert S. Strichartz Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705-714 | MR | Zbl
[21] Daniel Tataru Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc., Volume 15 (2002) no. 2, p. 419-442 (electronic) | MR | Zbl
Cited by Sources: