Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Journées équations aux dérivées partielles
  • Année 2010
  • article no. 11
  • Suivant
Dispersive and Strichartz estimates for the wave equation in domains with boundary
Oana Ivanovici1
1 Université de Nice Sophia-Antipolis, Laboratoire J.A.Dieudonné, Parc Valrose 06108 Nice Cedex 02 FRANCE
Journées équations aux dérivées partielles (2010), article no. 11, 19 p.
  • Résumé

In this note we consider a strictly convex domain Ω⊂ℝ d of dimension d≥2 with smooth boundary ∂Ω≠∅ and we describe the dispersive and Strichartz estimates for the wave equation with the Dirichlet boundary condition. We obtain counterexamples to the optimal Strichartz estimates of the flat case; we also discuss the some results concerning the dispersive estimates.

  • Détail
  • Export
  • Comment citer
EuDML
DOI : 10.5802/jedp.68
Affiliations des auteurs :
Oana Ivanovici 1

1 Université de Nice Sophia-Antipolis, Laboratoire J.A.Dieudonné, Parc Valrose 06108 Nice Cedex 02 FRANCE
  • BibTeX
  • RIS
  • EndNote
@incollection{JEDP_2010____A11_0,
     author = {Oana Ivanovici},
     title = {Dispersive and {Strichartz} estimates for the wave equation in domains with boundary},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {11},
     pages = {1--19},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2010},
     doi = {10.5802/jedp.68},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.68/}
}
TY  - JOUR
AU  - Oana Ivanovici
TI  - Dispersive and Strichartz estimates for the wave equation in domains with boundary
JO  - Journées équations aux dérivées partielles
PY  - 2010
SP  - 1
EP  - 19
PB  - Groupement de recherche 2434 du CNRS
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.68/
DO  - 10.5802/jedp.68
LA  - en
ID  - JEDP_2010____A11_0
ER  - 
%0 Journal Article
%A Oana Ivanovici
%T Dispersive and Strichartz estimates for the wave equation in domains with boundary
%J Journées équations aux dérivées partielles
%D 2010
%P 1-19
%I Groupement de recherche 2434 du CNRS
%U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.68/
%R 10.5802/jedp.68
%G en
%F JEDP_2010____A11_0
Oana Ivanovici. Dispersive and Strichartz estimates for the wave equation in domains with boundary. Journées équations aux dérivées partielles (2010), article  no. 11, 19 p. doi : 10.5802/jedp.68. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.68/
  • Bibliographie
  • Cité par

[1] Matthew D. Blair; Hart F. Smith; Christopher D. Sogge Strichartz estimates for the wave equation on manifolds with boundary, to appear in Ann.Inst.H.Poincaré, Anal.Non Liréaire | Numdam | MR

[2] Nicolas Burq; Patrick Gérard; Nicolay Tzvetkov Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., Volume 126 (2004) no. 3, pp. 569-605 | MR | Zbl

[3] Nicolas Burq; Gilles Lebeau; Fabrice Planchon Global existence for energy critical waves in 3-D domains, J. Amer. Math. Soc., Volume 21 (2008) no. 3, pp. 831-845 | MR

[4] E. B. Davies The functional calculus, J. London Math. Soc. (2), Volume 52 (1995) no. 1, pp. 166-176 | MR | Zbl

[5] Gregory Eskin Parametrix and propagation of singularities for the interior mixed hyperbolic problem, J. Analyse Math., Volume 32 (1977), pp. 17-62 | MR | Zbl

[6] J. Ginibre; G. Velo Generalized Strichartz inequalities for the wave equation, Partial differential operators and mathematical physics (Holzhau, 1994) (Oper. Theory Adv. Appl.), Volume 78, Birkhäuser, Basel, 1995, pp. 153-160 | MR

[7] Daniel Grieser L p bounds for eigenfunctions and spectral projections of the Laplacian near concave boundaries. Thesis, UCLA, 1992 (http://www.staff.uni-oldenburg.de/daniel.grieser/wwwpapers/diss.pdf)

[8] Oana Ivanovici Counter example to Strichartz estimates for the wave equation in domains, 2008 (to appear in Math. Annalen, arXiv:math/0805.2901) | arXiv

[9] Oana Ivanovici Counterexamples to the Strichartz estimates for the wave equation in domains II, 2009 http://www.citebase.org/abstract?id=oai:arXiv.org:0903.0048 (arXiv:math/0903.0048) | MR

[10] Oana Ivanovici; Fabrice Planchon Square function and heat flow estimates on domains, 2008 (arXiv:math/0812.2733) | arXiv

[11] L. V. Kapitanskiĭ Some generalizations of the Strichartz-Brenner inequality, Algebra i Analiz, Volume 1 (1989) no. 3, pp. 127-159 | MR | Zbl

[12] Markus Keel; Terence Tao Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980 | MR | Zbl

[13] Gilles Lebeau Estimation de dispersion pour les ondes dans un convexe, Journées “Équations aux Dérivées Partielles” (Evian, 2006), 2006 (see http://www.numdam.org/numdam-bin/fitem?id=JEDP_2006____A7_0) | Numdam

[14] Hans Lindblad; Christopher D. Sogge On existence and scattering with minimal regularity for semilinear wave equations, J. Funct. Anal., Volume 130 (1995) no. 2, pp. 357-426 | MR | Zbl

[15] Francis Nier A variational formulation of Schrödinger-Poisson systems in dimension d≤3, Comm. Partial Differential Equations, Volume 18 (1993) no. 7-8, pp. 1125-1147 | MR | Zbl

[16] A.N. Oraevsky Whispering-gallery waves, Quantum Electronics, Volume 32 (2002) no. 5, pp. 377-400

[17] Hart F. Smith A parametrix construction for wave equations with C 1,1 coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 3, pp. 797-835 | Numdam | MR | Zbl

[18] Hart F. Smith; Christopher D. Sogge On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc., Volume 8 (1995) no. 4, pp. 879-916 | MR | Zbl

[19] Hart F. Smith; Christopher D. Sogge On the L p norm of spectral clusters for compact manifolds with boundary, Acta Math., Volume 198 (2007) no. 1, pp. 107-153 | MR | Zbl

[20] Robert S. Strichartz Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705-714 | MR | Zbl

[21] Daniel Tataru Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc., Volume 15 (2002) no. 2, p. 419-442 (electronic) | MR | Zbl

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre