[In collaboration with Miguel Escobedo, Philippe Moireau and Magali Tournus]
Shrinkage of large particles, either through depolymerisation (i.e. progressive shortening) or through fragmentation (breakage into smaller pieces) may be modelled by discrete equations, of Becker–Döring type, or by continuous ones. In this note, we review two kinds of inverse problems: the first is the estimation of the initial size-distribution from moments measurements in a depolymerising system, in collaboration with Philippe Moireau and inspired by experiments carried out by Human Rezaei’s team; the second is the inference of fragmentation characteristics from size distribution samples, in collaboration with Miguel Escobedo and Magali Tournus, based on biological questions and experiments of Wei-Feng Xue’s team.
Keywords: Depolymerisation system, observability inequality, Carleman inequalities, error estimates, Tikhonov regularisation, Moments methods, Measure-valued solutions, Fragmentation equation
Marie Doumic 1
@incollection{JEDP_2023____A4_0, author = {Marie Doumic}, title = {Moments approaches for asymptotic inverse problems of depolymerisation and fragmentation systems}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:4}, pages = {1--13}, publisher = {R\'eseau th\'ematique AEDP du CNRS}, year = {2023}, doi = {10.5802/jedp.675}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.675/} }
TY - JOUR AU - Marie Doumic TI - Moments approaches for asymptotic inverse problems of depolymerisation and fragmentation systems JO - Journées équations aux dérivées partielles N1 - talk:4 PY - 2023 SP - 1 EP - 13 PB - Réseau thématique AEDP du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.675/ DO - 10.5802/jedp.675 LA - en ID - JEDP_2023____A4_0 ER -
%0 Journal Article %A Marie Doumic %T Moments approaches for asymptotic inverse problems of depolymerisation and fragmentation systems %J Journées équations aux dérivées partielles %Z talk:4 %D 2023 %P 1-13 %I Réseau thématique AEDP du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.675/ %R 10.5802/jedp.675 %G en %F JEDP_2023____A4_0
Marie Doumic. Moments approaches for asymptotic inverse problems of depolymerisation and fragmentation systems. Journées équations aux dérivées partielles (2023), Exposé no. 4, 13 p. doi : 10.5802/jedp.675. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.675/
[1] Estimation from Moments Measurements for Amyloid Depolymerisation, J. Theor. Biol., Volume 397 (2016), pp. 68-88 | DOI | MR | Zbl
[2] The mechanism of monomer transfer between two structurally distinct PrP oligomers, PLoS ONE, Volume 12 (2017) no. 7, e0180538 | DOI
[3] Information content in data sets for a nucleated-polymerisation model, J. Biol. Dyn., Volume 9 (2015) no. 1, pp. 172-197 | DOI | MR | Zbl
[4] Sur l’unicité rétrograde des équations paraboliques et quelques questions voisines, Arch. Ration. Mech. Anal., Volume 50 (1973) no. 1, pp. 10-25 | DOI | MR | Zbl
[5] The division of amyloid fibrils, iScience, Volume 23 (2020) no. 9, 101512 | DOI
[6] Spectral gap for the growth-fragmentation equation via Harris’s theorem, SIAM J. Math. Anal., Volume 53 (2021) no. 5, pp. 5185-5214 | DOI | MR | Zbl
[7] The Becker–Döring system and its Lifshitz–Slyozov limit, SIAM J. Appl. Math., Volume 62 (2002) no. 5, pp. 1488-1500 | Zbl
[8] Controllability and observability of an artificial advection-diffusion problem, Math. Control Signals Syst., Volume 24 (2012) no. 3, pp. 265-294 | DOI | MR | Zbl
[9] Singular optimal control: A linear 1-D parabolic-hyperbolic example, Asymptotic Anal., Volume 44 (2005) no. 3-4, pp. 237-257 | DOI | MR
[10] State estimation of a backward transport equation by moment measurements (working paper)
[11] Estimating the division rate and kernel in the fragmentation equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 7, pp. 1847-1884 | DOI | Numdam | MR | Zbl
[12] An inverse problem: recovering the fragmentation kernel from the short-time behaviour of the fragmentation equation (2024) (https://hal.science/hal-03494439v2, to appear in Ann. Henri Lebesgue)
[13] Nonparametric estimation of the division rate of a size-structured population, SIAM J. Numer. Anal., Volume 50 (2012) no. 2, pp. 925-950 | DOI | MR | Zbl
[14] Asymptotic approaches in inverse problems for depolymerization estimation (working paper)
[15] Numerical solution of an inverse problem in size-structured population dynamics, Inverse Probl., Volume 25 (2009) no. 4, 045008, 25 pages | MR | Zbl
[16] On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 1, pp. 99-125 | DOI | Numdam | MR | Zbl
[17] A nonexpanding transport distance for some structured equations, SIAM J. Math. Anal., Volume 53 (2021) no. 6, pp. 6847-6872 | DOI | MR | Zbl
[18] Artificial boundary conditions for the linear advection diffusion equation, Math. Comput., Volume 46 (1986), pp. 425-438 | DOI | MR | Zbl
[19] A scalar transport equation, Trans. Am. Math. Soc., Volume 85 (1957), pp. 547-560 | DOI | MR | Zbl
[20] General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., Volume 84 (2005) no. 9, pp. 1235-1260 | DOI | MR | Zbl
[21] On the inverse problem for a size-structured population model, Inverse Probl., Volume 23 (2007) no. 3, pp. 1037-1052 | DOI | MR | Zbl
[22] Note on the cost of the approximate controllability for the heat equation with potential, J. Math. Anal. Appl., Volume 295 (2004) no. 2, pp. 527-538 | DOI | MR
[23] An efficient kinetic model for assemblies of amyloid fibrils and its application to polyglutamine aggregation, PLoS ONE, Volume 7 (2012) no. 11, e43273 | DOI
[24] Construction of a control and reconstruction of a source for linear and nonlinear heat equations, Ph. D. Thesis, Université d’Orléans (2018)
[25] Insights into the dynamic trajectories of protein filament division revealed by numerical investigation into the mathematical model of pure fragmentation, PLoS Comput. Biol., Volume 17 (2021) no. 9, e1008964 | DOI
[26] Nonparametric estimators, Introduction to Nonparametric Estimation (Springer Series in Statistics), Springer, 2009, pp. 1-76 | MR
[27] An imaging and systems modeling approach to fibril breakage enables prediction of amyloid behavior, Biophys. J., Volume 105 (2013) no. 12, pp. 2811-2819 | DOI
Cité par Sources :