
Journées

ÉQUATIONS AUX DÉRIVÉES PARTIELLES

Aussois, 19–23 juin 2023

Marie Doumic
Moments approaches for asymptotic inverse problems of depolymerisation and fragmentation systems

J. É. D. P. (2023), Exposé no IV, 13 p.

<https://doi.org/10.5802/jedp.675>

Article mis en ligne dans le cadre du
Centre Mersenne pour l’édition scientifique ouverte

http://www.centre-mersenne.org/

RÉSEAU THÉMATIQUE AEDP DU CNRS

https://doi.org/10.5802/jedp.675
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/


Journées Équations aux dérivées partielles
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RT AEDP (CNRS)

Moments approaches for asymptotic inverse problems of
depolymerisation and fragmentation systems

Marie Doumic

Abstract

Shrinkage of large particles, either through depolymerisation (i.e. progressive shortening) or through
fragmentation (breakage into smaller pieces) may be modelled by discrete equations, of Becker–Döring
type, or by continuous ones. In this note, we review two kinds of inverse problems: the first is the
estimation of the initial size-distribution from moments measurements in a depolymerising system,
in collaboration with Philippe Moireau and inspired by experiments carried out by Human Rezaei’s
team; the second is the inference of fragmentation characteristics from size distribution samples, in col-
laboration with Miguel Escobedo and Magali Tournus, based on biological questions and experiments
of Wei-Feng Xue’s team.

1. Introduction

Polymers are large macromolecules formed out of small molecular units, called monomers. They
are ubiquitous in nature and industry – e.g. plastics, biopolymers such as DNA, actin filaments or
protein fibrils. Their shortening, either through depolymerisation (i.e., loss of monomers) or through
fragmentation into smaller pieces are dynamical phenomena which appear in many applications.
More specifically, the departure point of our research has been protein fibrils depolymerisation and
breakage, thought to be key mechanisms for many diseases (Parkinson’s, Alzheimer’s, Creuzfeldt–
Jakob’s etc.) as well as for many functional biomolecular systems (actin filaments). The dynamic
nature of the experiments, as well as their nanoscale, makes it very challenging to estimate their
features, i.e. their reaction rates or size distributions, leading to an urgent need for mathematical
models and estimation methods to be developed. In this note, we consider two case studies of such
inverse problems, directly inspired by modern experimental setups.

The first problem is based on experiments carried out in H. Rezaei’s lab (INRAE, Jouy-en-Josas,
France) where the observation consists in the time evolution of a moment of the size distribution
of protein polymers called PrP, responsible for Prion diseases. The moment observed may be the
total polymerised mass (first moment) or the average molecular weight (second moment). The
original model is a discrete depolymerisation system, based on the constant coefficient case of the
Becker–Döring equations, namely the reactions

Ci −→ Ci−1 + C1. (1.1)

Our aim is to estimate the initial polymer size distribution from such moment observations. We
first evaluate the impact of using continuous approximations of the initial discrete model to solve
this inverse problem. At first order, the model is approximated by a backward transport equation,
for which the inverse problem turns to be mildly ill-posed (of order k + 1 when used to invert the
time evolution of the kth-moment of the solution). This remains true when polymerisation is also
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considered [10], as in the full Becker–Döring system, though the inversion reveals more intricate
due to the fact that the problem becomes nonlinear.

At second order, the asymptotic model becomes an advection-diffusion equation, where the
diffusion is a corrective term, complemented with an original transparent boundary condition at
x = 0. This approximation is more accurate, but we face an accuracy versus stability trade-
off: the inverse reconstruction reveals to be severely ill-posed. Thanks to Carleman inequalities
and to log-convexity estimates, we prove observability results and error estimates for a Tikhonov
regularisation. We then develop a Kalman-based observer approach, which reveals very efficient
for the numerical solution. This is a joint work with Philippe Moireau (Inria) [14], inspired by
depolymerisation experiments carried out by Human Rezaei and collaborators (INRAE). We sketch
the main results of this study in Section 2.

The second problem is based on fragmentation experiments carried out on several protein poly-
mers by W.-F. Xue’s team (Univ. of Kent, Canterbury, United Kingdom), namely reactions of the
kind

Ci −→ Ci−j + Cj . (1.2)
The biophysical question which interested our collaborators was to estimate the (size-dependent)

fragmentation rate, as well as the so-called fragmentation kernel, which characterise the stability
of the polymers and the places where they are more likely to break. We have proposed several
approaches based on the continuous fragmentation equation, studying and making use either of the
long-term, the transient or the short-term dynamics. Error estimates in Bounded Lipshitz norm are
obtained for this last approach. This is a joint work with Miguel Escobedo and Magali Tournus [12],
and the project is a long-standing collaboration with Wei-Feng Xue and collaborators [5, 11, 25],
that we develop in Section 3.

2. Asymptotic inverse problems for depolymerisation systems

2.1. Original inverse problem: a discrete system
At the basis of this research program lie experimental protocols which follow the time dynamics
of average quantities over a size distribution of polymers. Typical measurements consist either in
the total polymerised mass (e.g. through a Thioflavine T or Th.T protocol [23]) or the average
molecular weight (e.g. with Static Light Scattering [2]). In a discrete setting, denoting Ci(τ) the
concentration of polymers containing i monomeric units, such measurement may be modelled by

Mk(τ) :=
∞∑

i=i0

ikCi(τ), (2.1)

with k = 1 for the polymerised mass, k = 2 linked to the average weight, i0 ≥ 1 either a detection
level or the smallest stable polymer, and the measurement of Mk is made up to a noise. The first
questions asked by our biologist collaborators were: what can we identify from such measurements,
and what cannot we? We have addressed this question in different experimental settings [2, 3], and
then decided to focus on the question of initial-state observability and estimation, both because it
is interesting in itself and because it is a prerequisite to parameter estimation: even in cases where
a priori knowledge of the initial state is known, it is always partial and noisy [2], requiring stability
analysis.

We assume a constant depolymerisation rate b > 0, so that the mass balance equation of (1.1)
leads to the elementary system

d
dτ

Ci = b(Ci+1 − Ci), Ci(0) = C0
i , i ≥ i0 (2.2)

2.2. Asymptotic approximations by continuous equations
A fundamental characteristics of the systems we are interested in is that the average polymer size
is very large - from some hundreds to some thousands of hundreds of monomers. For this reason,
we rescale the system by accelerating the time, which is an alternative of size rescaling as done
in [7] for instance. We define, for a given ε ≪ 1, t := ετ ∈ [0, T ], cε

i (t) := Ci( t
ε ), and obtain the

IV–2



rescaled system
d
dt

cε
i = b

ε
(cε

i+1 − cε
i ), cε

i (0) = c0
i , i ≥ i0. (2.3)

We recognise a first-order finite difference scheme for the transport equation, which leads us to
define a stepwise interpolant and grid:

∀ i ≥ i0, xε
i := ε(i − i0), uε(t, x) := cε

i , t ≥ 0, x ∈ [xε
i , xε

i+1). (2.4)

A Taylor expansion leads us to the following backward transport equation as a first order approx-
imation: {

∂tu∞ − b∂xu∞ = 0, (t, x) ∈ [0, T ] ×R+,

u∞(0, x) = u0(x), x ∈ R+,
(2.5)

whereas the second order approximation is given by
∂tu

ε
∞ − b∂xuε

∞ − bε

2 ∂2
xuε

∞ = 0, (t, x) ∈ [0, T ] ×R+,

∂tu
ε
∞(0, t) − b∂xuε

∞(0, t) = 0, t ∈ [0, T ],
uε

∞(0, x) = uε(0, x), x ∈ R+.

(2.6)

The transport-diffusion equation comes from the Taylor expansion, whereas the transport boundary
condition at x = 0 may be obtained by two considerations:

• as a boundary layer, we keep only the first order term, see e.g. [18],

• we require that the balance for the total number of polymers is preserved. This is given in
the discrete setting by

d
dt

M0 = d
dτ

∞∑
i=i0

Ci = −bCi0(t),

and doing the asymptotic expansion on this equality, where we identify cε
i0

with uε
∞(t, 0),

leads to the transport boundary condition.

Well-posedness for (2.6) follows for instance from the Lumer–Phillips theorem applied to a well-
chosen maximal accretive operator. To state error estimates, we introduce the following discrete
norm

∥u∥2
2,ε :=

∑
i≥i0

ε|u(xε
i )|2.

This norm is well defined for functions in H1(R∗
+) and is consistent with the L2(R+)-norm as

ε tends to 0. Moreover, it is well defined and equal to the L2(R+)-norm for piecewise constant
functions defined on the grid (xε

i ), as uε(t, · ) defined by (2.4) is.
We prove the following error estimates for the two approximate systems.

Proposition 1 ([14, Prop. 2.1. and 2.2.]). Let u0 ∈ H2(R+) and u∞ ∈ C0((0, T ); H2(R∗
+)) ∩

C1((0, T ); L2(R+)) solution to (2.5), uε
∞ ∈C0((0, T ); H2(R+))∩C1((0, T ); L2(R+)) solution to (2.6)

with u0 as an initial condition. Let (c0,ε
i ) ∈ ℓ2(N), (cε

i ) solution to (2.3) and uε defined by (2.4)
such that

∥uε(0, · ) − u0∥2,ε ≤ εα,

for α > 0. There exists a constant Cst > 0 depending only on b such that for all t > 0, we have

∥uε(t, · ) − u∞(t, · )∥2,ε ≤ εα + Cst∥u0∥H2(0,L) ε t,

and
∥uε(t, · ) − uε

∞(t, · )∥2,ε ≤ εα + Cst∥u0∥H2(0,L) ε
3
2 t

1
2 .

The proof is obtained through the Taylor expansion, using the Cauchy–Schwarz inequality and
a Gronwall lemma. For the second order approximation, we also use an energy estimate for ∂2

xxuε
∞,

which satisfies the same transport-diffusion equation as uε
∞ complemented with an homogeneous

Dirichlet boundary condition at x = 0.
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2.3. Original and asymptotic inverse problems
The two approximations (2.5) and (2.6) may then be used to solve the original discrete inverse
problem, which states: From a noisy measurement of (2.1) for τ ∈ [0, T ], how to estimate the initial
distribution Ci(0)? We first apply the rescaling by t = ετ and define

Mε
k(t) := ε

∞∑
i=i0

(εi)kcε
i (t), (2.7)

so that we have the following moments dynamics

d
dt

Mε
k =


−bcε

i0
, if k = 0,

−bMε
0 − bεi0cε

i0
, if k = 1,

−bkMε
k−1 + O(ε2) + k(k−1)

2 bεMε
k−2, if k ≥ 2.

(2.8)

The term O(ε2) is formally obtained, but for a compactly supported initial condition, Proposition 1
implies that it is at most O(ε3/2). We now restrict ourselves to such cases, namely εi ≤ L, or
equivalently x ∈ [0, L].

The original inverse problem may be formulated as: Invert

Ψu0→Mε
k

T,ε :

∣∣∣∣∣L
2(0, L) −→ L2(0, T )

u0 7−→ Mε
k .

The system (2.8) links Mε
k to cε

i0
(t) = u(t, 0), so that writing Ψu0→Mε

k

T,ε = ΨT r→Mε
k

T,ε ◦ Ψu0→Tr
T,ε we

decompose our problem into two steps:

1. Invert

Ψu0→Tr
T,ε :

∣∣∣∣∣L
2(0, L) −→ L2(0, T )

u0 7−→ u( · , 0) ∈ R)

2. Invert

ΨT r→Mε
k

T,ε :

∣∣∣∣∣L2(0, T ) −→ L2(0, T )
u( · , 0) 7−→ Mε

k .

In the case of the first order inverse problem, the method of characteristics implies that u(t, 0) =
u0(bt) so that inverting Ψu0→Tr

T,ε is a well-posed problem if and only if bT ≥ L. Moreover, we may
neglect the term −bεi0cε

i0
in (2.8) and obtain

dk+1

dtk+1 Mε
k(t) = (−b)k+1k!cε

i0
(t) + O(ε) = (−b)k+1k!u0(bt) + O(ε),

which shows that inverting ΨTr→Mε
k

T,ε is moderately/mildly ill-posed of degree k + 1, and from which
we immediately infer the following observability/stability inequality

∀ T ≥ T0 := L

b
, ∥u0∥2

L2(0,L) ≲

∥∥∥∥ dk+1

dtk+1 Mk

∥∥∥∥2

L2(0,T )
, (2.9)

see [1] for more details and a full solution of the inverse problem - theoretical, numerical with the
implementation of a Kalman-type sequential approach, and also applied to experimental data. Let
us only mention that for u0 ∈ Hs(0, L), s > 0, an observation yδ and a measurement error

∥Mε
k − yδ∥L2(0,L) ≤ δ,

we obtain an optimal error estimate in the order of ε
s

k+s+1 - as expected given the degree of
ill-posedness k + 1.

In the case of the second order problem, Step 1 reveals severely ill-posed, as linked to the time-
reversal of the (infinitely smoothing) heat equation. On the contrary, the second step, given by
inverting (2.8), is slightly less ill-posed, thanks to the corrective term −bεi0cε

i0
. In the following,

we thus focus on Step 1: inverting u0 7→ u( · , 0).
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2.4. Observability of the second-order inverse problem
A necessary step before solving the inverse problem is to prove that it is observable - other said,
that we have a unique solution in a certain space and continuity in a certain sense. To do so, we
first restrict ourselves to a bounded domain [0, L], and look for solutions to

∂tu − b∂xu − bε

2 ∂2
xu = 0, (t, x) ∈ [0, T ] × [0, L],

∂tu(t, 0) − b∂xu(t, 0) = 0, t ∈ [0, T ],
u(t, L) = 0, t ∈ [0, T ],
u(0, x) = u0(x), x ∈ (0, L).

(2.10)

The homogeneous Dirichlet boundary condition at x = L comes naturally from the discrete prob-
lem, for which, if initially, for i ≥ ε−1L, we have cε

i (0) = 0, then cε
i (t) = 0 for any t ≥ 0. In this

respect, the bounded problem is thus even more faithful than the unbounded one for compactly-
supported initial data. The system is solved, as for the unbounded problem (2.6), by introducing
an appropriate accretive operator, and the following observability inequality is obtained.

Theorem 2 ([14, Thm. 4.5]). Let u0 ∈ H1
R(0, L) ∩ H2(0, L), with ∥u0∥H1(0,L) ≤ M . Let u ∈

C0((0, T ); H1
R(0, L)) ∩ C1((0, T ); L2(0, L)) the unique solution to (2.10). Defining the increasing

function ρ : x 7→ xex, we have the following observability inequality, for constants c, C depending
only on b and L :

∥u(0, · )∥2
L2(0,L) + ε|u(0, 0)|2 ≲

Ce
L
ε M2

ρ−1
(

CT e− c
ε

(1+T −1)

1+T −4
M2∫ T

0
|u|2(t,0)dt

) T

ε
. (2.11)

Sketch of the proof. The inequality (2.11) relies on two main ingredients:

• a log-convexity inequality, inspired by [4, 22, 24], which gives a bound of the initial condition
with respect to the final time solution. This allows us to bypass a more standard exponential
stability estimate, which bounds the final time solution by the initial condition.

• A Carleman inequality, inspired by [8, 9], which proves a controllability inequality for a very
similar system. This technical part is an adaptation of the proof of Proposition 10 of [8]. □

A first interest of the inequality (2.11) is to provide uniqueness for the inversion of Ψu0→Tr
T,ε and

stability of a reconstruction. Moreover, thanks to the diffusion term, we no longer have a lower-
bound condition on T like the condition T ≥ T0 for (2.9). There is a price to pay however, which
is the logarithmic rate of convergence given by 1/ρ−1.

2.5. Solution and error estimate for the second-order inverse problem
A second benefit of (2.11) is to indicate how a Tikhonov regularisation strategy may be built, and
an estimate for the reconstruction. Since the bound M of the H1(0, L) norm appears in (2.11), we
define the following quadratic functional to minimise:

J|T (u0) := 1
2M2 ∥u0∥2

H1 + 1
2δ2

∫ T

0

∣∣yδ(t) − u|u0(t, 0)
∣∣2 dt, (2.12)

and we obtain the following error estimate.

Theorem 3 ([14, Thm. 4.6]). Let u0 ∈ H1
R(0, L) with ∥u0∥H1 ≤ M, y = uu0(t, · ) = Ψu0→Tr

T,ε (u0),
δ > 0. We assume that we observe yδ such that

∥y − yδ∥L2(0,T ) ≤ δ.

Let û0 an estimate for u0 defined by

û0 = argmin
u0∈H1

R
(0,L)

J|T (u0). (2.13)
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Then there exist constants C1 and C2, depending only on the parameters L, b, T and ε, such that

∥u0 − ū0
|T ∥2

L2(0,L) ≤ C1M2

ρ−1(C2
M2

δ2 )
. (2.14)

As expected, the speed of convergence is logarithmic with respect to the noise δ, to be compared
with an algebraic rate of convergence for the first-order system. We give here the proof, which is
very short and emblematic of error estimates for Tikhonov regularisation methods.

Proof. Let us denote ũ0 = u0−û0 and ũ = u|ũ0 the solution of (2.10) with ũ0 as an initial condition.
We apply (2.11) to ũ (and replace M by ∥ũ0∥H1), and obtain

∥ũ( · , 0)∥2
L2(0,L) + ε|ũ(0, 0)|2 ≲

Ce
L
ε ∥ũ0∥2

H1

ρ−1
(

CT e− c
ε

(1+T −1)

1+T −4
∥ũ0∥2

H1∫ T

0
|ũ|2(t,0)dt

) T

ε
.

From J|T (û0) ≤ J|T (u0) ≤ 1 we have∫ T

0
|ũ|2(t, 0)dt ≤ 2

∫ T

0
|u|û0 − yδ|2(t, 0)dt + 2

∫ T

0
|yδ − y|2(t, 0)dt ≤ 6δ2.

By the triangular inequality, we obtain

∥ũ0∥2
H1 ≤ 2∥û0|T ∥2

H1 + 2∥u0∥2
H1 ≤ 2M2 + 2∥û0|T ∥2

H1 .

To estimate ∥û0|T ∥2
H1 , we use the fact that it minimises J|T : by definition, we have

∥û0∥2
H1 ≤ 2M2J|T (ȳ0) ≤ 2M2J|T (u0) ≤ 2M2

(
1

2M2 ∥u0∥2
H1 + 1

2

)
J|T (ȳ0) ≤ 2M2,

hence
∥ũ0

|T ∥2
H1 ≤ 4M2

and we conclude by the fact that x 7→ x
ρ−1(x) is increasing on (0, ∞). □

To conclude, in [14] we propose a sequential approach based on Kalman filtering to solve the
estimation problem. Despite the severely ill-posed character of the second-order problem, it reveals
more accurate in simulation tests than the pure transport approximation. Moreover, the informa-
tion contained in the corrective diffusion is visible in the fact that even for T ≤ T0 = L

b we are able
to estimate the distribution for x > bT. How to refine the Carleman estimate cited above, in order
to quantify precisely how this information content vanishes for small times and, on the contrary,
stop improving for T0 ≲ T, remains a very interesting open problem.

3. Inverse problems for the fragmentation equation

Let us now turn to reactions of fragmentation type as given by (1.2). Writing a first-order asymp-
totics in the same spirit as (2.5) leads to the fragmentation equation:

∂

∂t
u(t, x) = −αxγu(t, x) + α

∫ ∞

x

κ

(
x

y

)
yγ−1u(t, y)dy, (3.1)

where αxγ represents the breakage rate of a particle of size x, that we have assumed to be given
by a power law, and κ(z) is linked to the probability for a particle of size y to give rise to a particle
of size x = zy. This model appeared as the best-fit one in experiments on β2−microglobulin [27],
where the experimental measurements consisted in samples of fibril sizes observed at several time
points. This led us to formulating the following inverse problem: How to estimate the fragmentation
features given by the parameters (α, γ, κ) from such data, with α, γ > 0 and κ a probability measure
on [0, 1]?

For mass conservation considerations we assume here binary fragmentation and no atom at
z = 0 and z = 1, hence

κ ∈ M+((0, 1)),
∫ 1

0
κ(dz) = 2,

∫ 1

0
zκ(dz) = 1, κ(z) = κ(1 − z). (3.2)
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For simplicity we have assumed binary fragmentation, which corresponds to N = 2 in [12], but the
study is unchanged.

This section explains the various stages in our approach, and how we successively used asymp-
totic behaviour, then large-time dynamics, and finally short-time behaviour, to try to estimate
κ, α and γ. The common thread running through our studies is the use of moments of the solution
to interpret the data observed, either integer moments or through the Mellin transform.

3.1. Using the asymptotic profile

First inspired by our knowledge on long-time asymptotics for the fragmentation equation [16] and
for the growth-fragmentation equation [20] (note that this field of research has been continuously
active for several decades, with remarkable new results inspired by stochastic methods [6] or optimal
transport [17]) and by previous studies of the inverse problem based on the asymptotic steady size
distribution [13, 15, 21], we first studied the information content of the self-similar asymptotic
profile g solution to

2g(z) + zg′(z) + αγzγg(z) = αγ

∫ ∞

z

κ

(
z

u

)
uγ−1g(u)du,

∫
g(z)dz = 1. (3.3)

This idea was guided by the fact that, as proven in Theorem 3.2 of [16] and Theorem 3.2. of [20],
under suitable assumptions on κ and for γ > 0, we have

lim
t→∞

∫ ∞

0

∣∣∣u(t, y) − t
2
γ g
(

t
1
γ y
)∣∣∣ ydy = 0, (3.4)

so that we can guess that, after rescaling, the profile g may be experimentally observed. The inverse
problem can then be reduced to: From observations on g, is it possible to estimate (α, γ, κ)?

In [11], we used the Mellin transform, defined for measure-valued functions by

M [g](s) :=
∫ +∞

0
xs−1g(x)dx, M [κ](s) :=

∫ 1

0
xs−1κ(dx), (3.5)

and the multiplicative convolution (which plays a similar role for the Mellin transform as the
standard convolution product for the Fourier transform)

(f ∗ g)(x) :=
∫
R+

f(y) g

(
x

y

)
dy

y
, M [f ∗ g](s) = M [f ](s).M [g](s). (3.6)

We moreover notice that M [z 7→ zγg(z)](s) = M [g](s + γ), hence taking the Mellin transform
of (3.3) leads to an explicit formula for κ, namely

M [κ](s) = 1 + (2 − s)M [g](s)
αγM [g](s + γ) . (3.7)

To justify rigorously (3.7), we need to prove that M [g](s + γ) never vanishes on a vertical strip; we
then also need to define its inverse Mellin transform. To do so, we carried out a detailed analytical
study in the complex plane. We also proved a uniqueness result which states that for a wide class
of kernels κ, for a given g, there exists at most one triplet (α, γ, κ) such that g is solution to (3.3)
([11, Thm. 1 and 2]). These results however revealed of little practical use, for two main reasons.

• Though (α, γ) are uniquely determined, they are obtained by using the asymptotic behaviour
of g(z) for z → ∞. Since we have only access to size samples, we have information on g only
on a compact set of (0, +∞).

• The formula involves Mellin and inverse Mellin transform, so that the inverse problem, as for
the second-order asymptotic inverse problem seen above (Theorem 3), is severely ill-posed.
When numerical implemented, the results failed to be satisfactory.
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3.2. Using the long-term dynamics
We thus turned to the time-evolution dynamics given by (3.4). From a sample (x1(ti), . . . , xni(ti))

at time ti, we estimate the average polymer size M1(ti) =
∫∞

0
xu(t,x)dx∫∞

0
u(t,x)dx

by the empirical first
moment, i.e.

M̂1(ti) =
ni∑

k=1
xk(ti) (3.8)

and we can relate it to u(t, x) to estimate (α, γ). The limit given by (3.4) implies

M1(t) ≈t≫1

∫
t

2
γ yg(t

1
γ y)dy∫

t
2
γ g(t

1
γ )dy

= Ct− 1
γ ,

Similarly, for the estimation of α, we notice that integrating (3.3) and using the mass conservation
property

∫
κ(dz) = 1 provides the equality

1 = αγ

∫
zγg(z)dz. (3.9)

We thus use the γ−th moment Mγ(t) =
∫∞

0
xγ u(t,x)dx∫∞

0
u(t,x)dx

, approximated by an empirical M̂γ̂(ti)

defined by

M̂γ̂(ti) =
ni∑

k=1
(xk(ti))γ̂ (3.10)

and the equality

Mγ(t) ≈t≫1

∫
t

2
γ yγg(t

1
γ y)dy∫

t
2
γ g(t

1
γ )dy

=
∫

zγg(z)dz

t
=⇒ α ≈t≫1

1
γt

1
Mγ(t) (3.11)

so that in [5] we designed the following estimation protocol for (α, γ):

1. On observed data (log(ti), log(M̂1(ti))1≤i≤n defined by (3.8), fit the three parameters
(C, tasymp, γ̂) of a curve(

log(t), C − 1
γ̂

log
(

t

tasymp

)
1t≥tasymp

)
,

and choose γ̂ as an estimator for γ. Notice here that we only use a small part of the available
data, namely the average size and not the whole size distribution. For each of the four protein
fibrils analysed (α−Synuclein, associated with Parkinson, bovine β−lactoglobulin, chicken
egg lysozyme and β2-microglobulin – this last amyloids being involved in systemic dialysis-
related amyloidosis), we had from 7 to 14 time points ti. The fits appeared very satisfactory
(see [5, Fig. 5]).

2. From γ̂ and tasymp computed in Step 1, use M̂γ̂(ti) defined by (3.10) for ti ≥ tasymp and
define an estimator of α from (3.11) by

α̂ := 1
γ̂ti

1
M̂γ̂(ti)

.

To validate a posteriori the estimation obtained, we then use the full dataset as follows.

1. At initial time t1 = 0, use the size sample (x1(0), . . . , xn0(0)) to obtain an estimate f̂(0, x) of
the initial size distribution f(0, x) = u(0,x)∫

u(0,x)dx
by a kernel density estimation method [26],

2. Simulate (3.1) with u(0, x) = f̂(0, x), parameters α̂, γ̂ and a given kernel κ,

3. at times ti of experimental observations, compare the simulated f(ti, x) = u(ti,x)∫
u(ti,x)dx

with

the density f̂(ti, x) estimated from the size sample (x1(ti), . . . , xni
(ti)) by a kernel density

estimation method.
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We obtained the following quantitative results.

• We observed a remarkable agreement between the data observed and simulated (see [5,
Fig. 7]). This is all the more satisfactory that only two parameters α and γ are necessary
to fit the whole time dynamics.

• The choice of κ appears to have only little influence on the goodness of fit, even if we were
able to draw some conclusion on whether the breakage occurs more at the edges or at the
centre of the fibrils ([5, Fig. 8]).

3.3. Using the short-time dynamics
Intrigued by the influence of κ on the time dynamics, we carried out a thorough numerical investi-
gation in [25]. Specifically, we developed a statistical test to quantify how different fragmentation
kernels influence the size distribution of particles over time ([25, Fig. 4]), when all dynamics depart
from the same initial distribution. We noticed first that the sharper the initial condition, the greater
the influence of κ; and second, that this influence occurs mainly during an early time-window –
even if not too early either, since the initial condition is taken identical in all simulations. Follow-
ing this study, we turned to a short-time asymptotic development, carried out from a Dirac delta
function as an initial distribution. A formal computation shows:

u(t + ∆t, x) ≈ u(t, x) − α∆txγu(t, x) + α∆t

∫ ∞

x

κ

(
x

y

)
yγ−1u(t, y)dy + o(∆t). (3.12)

Departing at time t = 0 from a Dirac delta function δ(x − 1) at x = 1, we have
u(∆t, x) ≈ δ(x − 1)(1 − α∆t) + ακ(x)∆t + o(∆t),

and thus we obtain an estimation formula for the kernel κ: if we have û(∆t, · ) an estimate, obtained
from observations on the size distribution u(∆t, · ), we could define an estimate for κ as

κ̂(x) := 1
α∆t

(u(∆t, x) − (1 − α∆t)δ(x − 1)) + o(1), ∆t ≪ 1. (3.13)

How to evaluate the error made between κ and κ̂? We first recall the definitions of the Total
Variation norm and the Bounded Lipshitz norm, the latter being more appropriate to evaluate the
discrepancy between two measures.

Definition 4. Let M(R+) be the set of Radon measures whose support belongs to R+. The Total
Variation (TV) norm of the signed measure µ ∈ M(R+) is defined as

∥µ∥T V := sup
{∫

R+
φ(x)dµ(x), φ ∈ C(R+) ∩ L1(d|µ|), ∥φ∥∞ ≤ 1

}
, (3.14)

whereas its Bounded Lipshitz (BL) norm is defined by

∥µ∥BL := sup
{∫

R+
φ(x)dµ(x), φ ∈ C(R+) ∩ L1(d|µ|), ∥φ∥∞ ≤ 1, ∥φ′∥∞ ≤ 1

}
. (3.15)

A second preliminary step is to define measure-valued solutions to (3.12), since we want to
depart from a measure-valued initial condition. This is given by the following definition.

Definition 5 (Weak solution for (3.1) – [12, Def. 2.1]). A family (µt)t≥0 ⊂ M(R+), where M(R+)
denotes the space of Radon measures on R+, is called a measure-valued solution to (3.1), with
initial data µ0 ∈ M(R+) satisfying supp(µ0) ⊂ [0, L], if the mapping t → µt is narrowly continuous
and for all φ ∈ C(R+) such that x 7→ φ(x)/(1 + x) is bounded on [0, ∞), and all t ≥ 0,∫

R+
φ(x)dµt(x) =

∫
R+

φ(x)dµ0(x) +
∫ t

0
ds

∫
R+

dµs(x)αxγ

(
−φ(x) +

∫ 1

0
dκ(z)φ(xz)

)
. (3.16)

The class of functions used to define the weak solutions ensures the finiteness of
∫

(1+x)dµt(x).
Despite the numerous studies carried out on fragmentation equations, the question of existence and
uniqueness of measure-valued solutions to (3.1) for a large class of kernels κ appeared yet unsolved.
We thus formulated the following result, which moreover provides an explicit decomposition of such
solutions.
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Theorem 6 (From Theorems 2.2, 2.4 and 2.6 of [12]). Let κ satisfy (3.2), α > 0, γ ≥ 0 and
µ0 ∈ M+((0, L)) for some L > 0. There exists a unique solution µ ∈ C(R+, M+(R+)) to (1.2) in
the sense of Definition 4. Moreover, this unique solution

• preserves the mass:
∫

xµt(dx) =
∫

xµ0(dx) for any t ≥ 0,

• is nonnegative,

• satisfies supp(µt) ⊂ (0, L) for any t ≥ 0,

• is explicitely defined as the following series, which is absolutely convergent in the TV norm
for any t ≥ 0:

µt = e−αxγ tµ0 +
∞∑

n=0
(αt)n

∫ ∞

0
ℓnγan

(x

ℓ

)
µ0(ℓ)dℓ

ℓ
, (3.17)

where the sequence an is defined by induction, for x ∈ [0, 1], by

a0(x) = 0, an+1(x) = 1
n + 1

(
−xγan(x) + 2

∫ ∞

x

yγ−1κ

(
x

y

)
an(y)dy + κ(x) (−1)n

n!

)
. (3.18)

Proof. Let us sketch the main steps of the proof.

Step 1. Uniqueness and, if the solution is proved to be nonnegative, supp(µt) ⊂ (0, L) ( [12,
Thm. 2.2]). By choosing appropriate weight functions, we prove that a nonnegative solution satisfies
supp(µt) ⊂ (0, L) for any t ≥ 0, and then, with a Gronwall lemma, we prove the estimate

∥µt∥T V ≤ ∥µ0∥T V eα(2L)γ 3t,

which implies uniqueness.

Step 2. The representation formula (3.17) ( [12, Thm. 2.4]). We first obtain the representation
formula for the fundamental solution µF

t , defined as a solution departing from µ0(x) = δ(x − 1),
namely:

µF
t (x) = e−αtδ(x − 1) +

∞∑
n=1

(αt)nan(x). (3.19)

By a scaling property, we deduce the solution for µ0(x) = δ(x − ℓ), and we conclude by the
superposition principle.

Step 3. Nonnegativity of the representation formula (3.17) ( [12, Thm. 2.6]). This last step is more
delicate than it can seem at first sight, and we have not found nonnegativity results for cases where
both the solution and the fragmentation kernel are measure-valued functions in the literature. We
prove this result by an approximation strategy on the fundamental solution µF

t . Regularising both
κ and the initial condition δ(x − 1), we can apply a nonnegativity result [19]; we then conclude by
weak convergence of the approximate sequence. □

Equipped with this well-defined notion of measure-valued solutions, we then turn to our inverse
problem, and prove successive error estimates:

1. error estimate, in TV norm, for perfectly observed data (no noise), with perfectly monodis-
perse initial condition (µ0 = δ(x − 1)),

2. error estimate, in BL norm, for noisy data and nearly monodisperse initial condition
(∥µ0 − δ(x − 1)∥BL small),

3. error estimate, via the Mellin transform, for perfectly observed data (no noise) and disperse
initial condition (arbitrary µ0).
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Error estimate (1): monodisperse initial condition, no noise

From (3.19), we are led to precise the formal approximation (3.13), and define

κest(t) := µF
t − e−αtδ(x − 1)

αt
. (3.20)

From (3.17) we immediately obtain ([12, Thm. 3.1]):∥∥∥κest − κ
∥∥∥

T V
≤ t

(
α

∞∑
n=0

(αT )n∥an+2∥T V

)
, ∀ t ∈ (0, T ]. (3.21)

Error estimate (2): nearly monodisperse initial condition, noisy data

From (3.21) it seems that the smaller the observation time t, the more precise the estimate κest.
This fails in practice, where the noise comes from at least two sources:

• the initial condition cannot be as precise as a Dirac delta function. Even if we could imagine
an experimental setup selecting polymers of the same size, there will always remain some
heterogeneity.

• Typical experimental measurements being polymer size samples, µt as well as µ0 can only
be observed up to a noise.

For these two sources of noise, the distance in BL-norm is well-adapted. We thus formulate the
following error estimate result.

Theorem 7 ([12, Thm. 3.5]). Let κ satisfy (3.2) and supp(µε0
0 ) ⊂ [0, L] such that

∥µε0
0 − δ(x − 1)∥BL ≤ ε0.

Let µε0
t the unique solution to the fragmentation equation (1.2) with initial condition µε0

0 . Let µε0,ε1
0

and µε0,ε2
t be noisy observations of the respective measures µε0

0 and µε0
t such that

∥µε0,ε1
0 − µε0

0 ∥BL ≤ ε1, ∥µε0,ε2
t − µε0

t ∥BL ≤ ε2.

Assume moreover either γ ≥ 1 or supp(µ0) ⊂ [m, L] with m > 0. Then, for all 0 ≤ t ≤ T , there
exist constants C1(T, α) and C2(L, T, α, γ, mγ−1) such that∥∥∥µε0,ε2

t − e−αtµε0,ε1
0

αt
− κ
∥∥∥

BL
≤ C1t + C2ε0 + ε1 + ε2

αt
. (3.22)

The proof is immediate once a stability result for the solution to the fragmentation equation in
BL-norm is obtained ([12, Thm. 2.11]): this stability is obtained only for γ ≥ 1 or supp(µ0) ⊂ [m, L]
with m > 0, hence these extra assumptions. The form of the inequality (3.22) is very interesting,
since it has the exact form of the usual bias-variance decomposition for regularisation of inverse
problems as well as nonparametric density estimation: a balance between two terms, one vanishing
with the regularisation parameter, the other exploding with it but multiplied by the noise level,
so that the observation time t identifies with a regularisation parameter, and is optimal if t =
O(

√
ε0 + ε1 + ε2). Intuitively, this corresponds to a time large enough so that “enough” (compared

to the noise level) polymers have divided once, but small enough so that not too many have divided
twice (term C1t, which shows that the distance increases with time).

Error estimate (3): arbitrary initial condition, no noise

In many practical cases, it seems very difficult, if not impossible, to have monodisperse or almost
monodisperse initial condition, so that µ0 is far away from a Dirac delta function. The same
strategy can however be followed.

For simplicity, let κ = κ(x)dx and µ0 = u0(x)dx admit densities with respect to the Lebesgue
measure, denote µt(dx) = u(t, x)dx and define

F est(u0, κ; t, x) = u(t, x) − e−αtxγ

u0(x)
αt

. (3.23)
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Thanks to the superposition principle, we have the following inequality ([12, Cor. 3]), for a given
constant C, ∥∥∥F est(u0, κ; t) − w0 ∗ κ(x)

∥∥∥
T V

≤ CL2γ∥u0∥T V t, ∀ t ∈ (0, T ], (3.24)

where ∗ denotes the multiplicative convolution defined by (3.6) and w0(x) = xγu0(x). To have an
estimate for κ, we thus need to invert the multiplicative convolution. Recalling the formula for the
Mellin transforms (3.5), a candidate to estimate M [κ] is thus

M [κ]est(s; t) :=
M [u(t, · )](s) − M

[
x 7→ e−αtxγ

u0(x)
]

(s)
αtM [u0](s + γ) . (3.25)

The common point between (3.7) and (3.25) is the presence in the denominator of the Mellin
transform, taken in s+γ, of a size distribution observed. For large γ, this may reveal very noisy, since
this gives a lot of weight to the largest particles. However, contrarily to the case of formula (3.7),
we managed to prove an error estimate between M [κ]est(s; t) and M [κ](s), thanks to the Mellin
transform of the series representation (3.17) and under regularity assumptions on κ and u0. We refer
the reader to Theorems 4.4 and 4.6 in [12] for a detailed presentation of the results, which contain
an estimate of the distance between κ and κest := M−1[M [κ]est( · ; t)], in a certain weighted norm,
in the order of Cst∆t. This order of magnitude is coherent with the estimate (3.21); however the
constant Cst is not explicit, and the observation noise is not yet taken into account. This question
of stability with respect to noise, together with a numerical investigation, are perspectives for
future work.
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