This note is based on the recent work [10], which analyzes the collective behaviour of suspensions of self-propelled particles in a fluid flow. The underlying model is a coupled Stokes-kinetic system of PDE’s, describing the fluid velocity and the distribution of particles in space and orientation. The stability analysis of the isotropic distribution relies on a careful study of the mixing and enhanced diffusion properties of the system. Mathematically, the interest of this study comes from the orientation variable , which substitutes to the usual velocity variable from more standard models, and is responsible for new phenomena and difficulties.
Cette note s’appuie sur le travail récent [10], dédié à l’analyse du comportement collectif de particules auto-propulsées en suspension dans un écoulement fluide. Le modèle sous-jacent est un système d’EDP de type fluide/cinétique, qui décrit la vitesse du fluide et la distribution des particules en espace et en orientation. L’analyse de stabilité de la distribution isotrope repose sur une étude fine des propriétés de mélange et de diffusion accélérée du système. Mathématiquement, l’intérêt de l’étude vient de la variable d’orientation , qui se substitue à la variable de vitesse des modèles plus classiques, et est à l’origine de difficultés et phénomènes nouveaux.
@incollection{JEDP_2023____A5_0, author = {David G\'erard-Varet}, title = {Recent progress in the mathematical analysis of active suspensions}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:5}, pages = {1--12}, publisher = {R\'eseau th\'ematique AEDP du CNRS}, year = {2023}, doi = {10.5802/jedp.676}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.676/} }
TY - JOUR AU - David Gérard-Varet TI - Recent progress in the mathematical analysis of active suspensions JO - Journées équations aux dérivées partielles N1 - talk:5 PY - 2023 SP - 1 EP - 12 PB - Réseau thématique AEDP du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.676/ DO - 10.5802/jedp.676 LA - en ID - JEDP_2023____A5_0 ER -
%0 Journal Article %A David Gérard-Varet %T Recent progress in the mathematical analysis of active suspensions %J Journées équations aux dérivées partielles %Z talk:5 %D 2023 %P 1-12 %I Réseau thématique AEDP du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.676/ %R 10.5802/jedp.676 %G en %F JEDP_2023____A5_0
David Gérard-Varet. Recent progress in the mathematical analysis of active suspensions. Journées équations aux dérivées partielles (2023), Talk no. 5, 12 p. doi : 10.5802/jedp.676. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.676/
[1] Dallas Albritton; Laurel Ohm On the Stabilizing Effect of Swimming in an Active Suspension, SIAM J. Math. Anal., Volume 55 (2023) no. 6, pp. 6093-6132 | DOI | MR | Zbl
[2] Habib Ammari; Pierre Garapon; Hyeonbae Kang; Hyundae Lee Effective viscosity properties of dilute suspensions of arbitrarily shaped particles, Asymptotic Anal., Volume 80 (2012) no. 3-4, pp. 189-211 | DOI | MR | Zbl
[3] George K. Batchelor Sedimentation in a dilute dispersion of spheres, J. Fluid Mech., Volume 52 (1972) no. 2, pp. 245-268 | DOI | Zbl
[4] George K. Batchelor; J. T. Green The determination of the bulk stress in a suspension of spherical particles to order , J. Fluid Mech., Volume 56 (1972) no. 3, pp. 401-427 | DOI | Zbl
[5] Jacob Bedrossian; Pierre Germain; Nader Masmoudi Stability of the Couette flow at high Reynolds numbers in two dimensions and three dimensions, Bull. Am. Math. Soc., Volume 56 (2019) no. 3, pp. 373-414 | DOI | MR | Zbl
[6] Howard Brenner Rheology of a dilute suspension of axisymmetric Brownian particles, Int. J. Multiphase Flow, Volume 1 (1974) no. 2, pp. 195-341 https://www.sciencedirect.com/science/article/pii/0301932274900184 | DOI | Zbl
[7] Sanchit Chaturvedi; Jonathan Luk; Toan Nguyen The Vlasov-Poisson-Landau system in the weakly collisional regime, J. Am. Math. Soc., Volume 36 (2023) no. 4, pp. 1103-1189 | DOI | MR | Zbl
[8] Hayato Chiba A proof of the Kuramoto conjecture for a bifurcation structure of the infinite-dimensional Kuramoto model, Ergodic Theory Dyn. Syst., Volume 35 (2015) no. 3, pp. 762-834 | DOI | MR | Zbl
[9] Peter Constantin Nonlinear Fokker–Planck Navier–Stokes systems, Commun. Math. Sci., Volume 3 (2005) no. 4, pp. 531-544 | DOI | MR | Zbl
[10] M. Coti Zelati; Helge Dietert; David Gérard-Varet Orientation Mixing in Active Suspensions (2022) (to appear in Ann. PDE)
[11] M. Coti Zelati; Helge Dietert; David Gérard-Varet Nonlinear stability for active suspensions (2023) (work in progress)
[12] Helge Dietert Stability and bifurcation for the Kuramoto model, J. Math. Pures Appl., Volume 105 (2016) no. 4, pp. 451-489 | DOI | MR | Zbl
[13] Helge Dietert; Bastien Fernandez; David Gérard-Varet Landau damping to partially locked states in the Kuramoto model, Commun. Pure Appl. Math., Volume 71 (2018) no. 5, pp. 953-993 | DOI | MR | Zbl
[14] Masao Doi; Samuel Edwards The Theory of Polymer Dynamics, International Series of Monographs on Physics, 73, Clarendon Press, 1988
[15] Mitia Duerinckx; Antoine Gloria Corrector equations in fluid mechanics: effective viscosity of colloidal suspensions, Arch. Ration. Mech. Anal., Volume 239 (2021) no. 2, pp. 1025-1060 | DOI | MR | Zbl
[16] Mitia Duerinckx; Antoine Gloria Sedimentation of random suspensions and the effect of hyperuniformity, Ann. PDE, Volume 8 (2022) no. 1, 2, 66 pages | DOI | MR | Zbl
[17] Mitia Duerinckx; Antoine Gloria On Einstein’s effective viscosity formula, Memoirs of the European Mathematical Society, 7, EMS Press, 2023, viii+186 pages | DOI | MR
[18] Albert Einstein Eine neue bestimmung der moleküldimensionen, Ann. Phys. (Berlin), Volume 19 (1906), pp. 289-306 | DOI | Zbl
[19] Erwan Faou; Romain Horsin; Frédéric Rousset On linear damping around inhomogeneous stationary states of the Vlasov-HMF model, J. Dyn. Differ. Equations, Volume 33 (2021) no. 3, pp. 1531-1577 | DOI | MR | Zbl
[20] Bastien Fernandez; David Gérard-Varet; Giambattista Giacomin Landau damping in the Kuramoto model, Ann. Henri Poincaré, Volume 17 (2016) no. 7, pp. 1793-1823 | DOI | MR | Zbl
[21] David Gérard-Varet Derivation of the Batchelor-Green formula for random suspensions, J. Math. Pures Appl., Volume 152 (2021), pp. 211-250 | DOI | MR | Zbl
[22] David Gérard-Varet; Matthieu Hillairet Analysis of the viscosity of dilute suspensions beyond Einstein’s formula, Arch. Ration. Mech. Anal., Volume 238 (2020) no. 3, pp. 1349-1411 | DOI | MR | Zbl
[23] David Gérard-Varet; Richard M. Höfer Mild assumptions for the derivation of Einstein’s effective viscosity formula, Commun. Partial Differ. Equations, Volume 4 (2021), pp. 611-629 | DOI | MR | Zbl
[24] David Gérard-Varet; Amina Mecherbet On the correction to Einstein’s formula for the effective viscosity, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 39 (2022) no. 1, pp. 87-119 | DOI | MR | Zbl
[25] Gustaf Gripenberg; Stig-Olof Londen; Olof Staffans Volterra integral and functional equations, Encyclopedia of Mathematics and Its Applications, 34, Cambridge University Press, 1990 | DOI | MR | Zbl
[26] Élisabeth Guazzelli; Olivier Pouliquen Rheology of dense granular suspensions, J. Fluid Mech., Volume 852 (2018), P1, 73 pages | DOI | MR | Zbl
[27] Brian M. Haines; Anna L. Mazzucato A proof of Einstein’s effective viscosity for a dilute suspension of spheres, SIAM J. Math. Anal., Volume 44 (2012) no. 3, pp. 2120-2145 | DOI | MR | Zbl
[28] Matthieu Hillairet; Di Wu Effective viscosity of a polydispersed suspension, J. Math. Pures Appl., Volume 138 (2020), pp. 413-447 | DOI | MR | Zbl
[29] Richard M. Höfer; Amina Mecherbet; Richard Schubert Non-existence of Mean-Field Models for Particle Orientations in Suspensions, J. Nonlinear Sci., Volume 34 (2024) no. 1, 3 | DOI | MR | Zbl
[30] Richard M. Höfer; Richard Schubert The influence of Einstein’s effective viscosity on sedimentation at very small particle volume fraction, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 38 (2021) no. 6, pp. 1897-1927 | DOI | Numdam | MR | Zbl
[31] Christel Hohenegger; Michael J. Shelley Stability of active suspensions, Phys. Rev. E, Volume 81 (2010) no. 4, 046311, 10 pages | DOI | MR
[32] Pierre-Emmanuel Jabin; Felix Otto Identification of the dilute regime in particle sedimentation, Commun. Math. Phys., Volume 250 (2004) no. 2, pp. 415-432 | DOI | MR | Zbl
[33] George B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. Soc. Lond., Ser. A, Volume 102 (1922), pp. 161-179 | DOI | Zbl
[34] Sergiu Klainerman Uniform decay estimates and the Lorentz invariance of the classical wave equation, Commun. Pure Appl. Math., Volume 38 (1985) no. 3, pp. 321-332 | DOI | MR | Zbl
[35] Thérèse Lévy; Enrique Sánchez-Palencia Einstein-like approximation for homogenization with small concentration. II. Navier-Stokes equation, Nonlinear Anal., Theory Methods Appl., Volume 9 (1985) no. 11, pp. 1255-1268 | DOI | MR | Zbl
[36] Zhiwu Lin; Chongchun Zeng Small BGK waves and Nonlinear Landau Damping, Commun. Math. Phys., Volume 306 (2011) no. 2, pp. 291-331 | MR | Zbl
[37] Gunther Machu; Walter Meile; Ludwig C. Nitsche; Uwe Schaflinger Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations, J. Fluid Mech., Volume 447 (2001), pp. 299-336 | DOI | Zbl
[38] Amina Mecherbet Sedimentation of particles in Stokes flow, Kinet. Relat. Models, Volume 12 (2019) no. 5, pp. 995-1044 | DOI | MR | Zbl
[39] Bloen Metzger; Maxime Nicolas; Élisabeth Guazzelli Falling clouds of particles in viscous fluids, J. Fluid Mech., Volume 580 (2007), pp. 283-301 | DOI | Zbl
[40] Clément Mouhot; Cédric Villani On Landau damping, Acta Math., Volume 207 (2011) no. 1, pp. 29-201 | DOI | MR | Zbl
[41] Barbara Niethammer; Richard Schubert A local version of einstein’s formula for the effective viscosity of suspensions (2019) | arXiv
[42] Laurel Ohm; Michael J. Shelley Weakly nonlinear analysis of pattern formation in active suspensions, J. Fluid Mech., Volume 942 (2022), A53, 41 pages | DOI | MR | Zbl
[43] Felix Otto; Athanasios E. Tzavaras Continuity of velocity gradients in suspensions of rod-like molecules, Commun. Math. Phys., Volume 277 (2008) no. 3, pp. 729-758 | DOI | MR | Zbl
[44] Oliver Penrose Electrostatic instabilities of a uniform non-Maxwellian plasma, Phys. Fluids, Volume 3 (1960), pp. 258-265 | DOI | Zbl
[45] Salima Rafaï; Levan Jibuti; Philippe Peyla Effective Viscosity of Microswimmer Suspensions, Phys. Rev. Lett., Volume 104 (2010), 098102 | DOI
[46] Jacob Rubinstein; Joseph B. Keller Sedimentation of a dilute suspension, Phys. Fluids, A, Volume 1 (1989), pp. 637-643 | DOI | MR | Zbl
[47] David Saintillan Rheology of active fluids, Annual review of fluid mechanics. Vol. 50, Annual Reviews, 2018, pp. 563-592 | DOI | MR | Zbl
[48] David Saintillan; Michael J. Shelley Instabilities, pattern formation, and mixing in active suspensions, Phys. Fluids, Volume 20 (2008) no. 12, 123304, 16 pages semanticscholar.org/paper/86b1020d1158be9c5b8d571833efa3bd15d7506b | DOI | Zbl
[49] Enrique Sánchez-Palencia Einstein-like approximation for homogenization with small concentration. I. Elliptic problems, Nonlinear Anal., Theory Methods Appl., Volume 9 (1985) no. 11, pp. 1243-1254 | DOI | MR | Zbl
[50] A. Sierou; J. F. Brady Rheology and microstructure in concentrated noncolloidal suspensions, J. Rheol., Volume 46 (2002), pp. 1031-1056 | DOI
[51] Jacques Smulevici Small data solutions of the Vlasov-Poisson system and the vector field method, Ann. PDE, Volume 2 (2016) no. 2, 11, 55 pages | DOI | MR | Zbl
[52] Andrey Sokolov; Igor S. Aranson Reduction of Viscosity in Suspension of Swimming Bacteria, Phys. Rev. Lett., Volume 103 (2009), 148101 | DOI
[53] Cédric Villani Hypocoercivity, Memoirs of the American Mathematical Society, 950, American Mathematical Society, 2009 | DOI | Zbl
[54] Dongyi Wei; Zhifei Zhang Enhanced dissipation for the Kolmogorov flow via the hypocoercivity method, Sci. China, Math., Volume 62 (2019) no. 6, pp. 1219-1232 | DOI | MR | Zbl
[55] Dongyi Wei; Zhifei Zhang Transition Threshold for the 3D Couette Flow in Sobolev Space, Commun. Pure Appl. Math., Volume 74 (2021) no. 11, pp. 2398-2479 | DOI | MR | Zbl
Cited by Sources: