In these notes for the proceedings of the “Journée Équations aux Dérivées Partielles”, we survey some of the recent progress in and the interplay of unique continuation, approximation and some related nonlocal inverse problems. In particular, we discuss the qualitative and quantitative global unique continuation properties of the fractional Laplacian and its Runge approximation properties. We explain how this leads to surprising results on the inverse problems for the associated operators.
@incollection{JEDP_2018____A8_0, author = {Angkana R\"uland}, title = {Unique {Continuation,} {Runge} {Approximation} and the {Fractional} {Calder\'on} {Problem}}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:8}, pages = {1--10}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2018}, doi = {10.5802/jedp.668}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.668/} }
TY - JOUR AU - Angkana Rüland TI - Unique Continuation, Runge Approximation and the Fractional Calderón Problem JO - Journées équations aux dérivées partielles N1 - talk:8 PY - 2018 SP - 1 EP - 10 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.668/ DO - 10.5802/jedp.668 LA - en ID - JEDP_2018____A8_0 ER -
%0 Journal Article %A Angkana Rüland %T Unique Continuation, Runge Approximation and the Fractional Calderón Problem %J Journées équations aux dérivées partielles %Z talk:8 %D 2018 %P 1-10 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.668/ %R 10.5802/jedp.668 %G en %F JEDP_2018____A8_0
Angkana Rüland. Unique Continuation, Runge Approximation and the Fractional Calderón Problem. Journées équations aux dérivées partielles (2018), Talk no. 8, 10 p. doi : 10.5802/jedp.668. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.668/
[1] Vilhelm Adolfsson; Luis Escauriaza; Carlos Kenig Convex domains and unique continuation at the boundary, Rev. Mat. Iberoam., Volume 11 (1995) no. 3, pp. 513-525 | DOI | MR | Zbl
[2] Habib Ammari; Gunther Uhlmann Reconstruction of the potential from partial Cauchy data for the Schrödinger equation, Indiana Univ. Math. J., Volume 53 (2004) no. 1, pp. 169-183 | Zbl
[3] Sombuddha Bhattacharyya; Tuhin Ghosh; Gunther Uhlmann Inverse problem for fractional-Laplacian with lower order non-local perturbations (2018) (https://arxiv.org/abs/1810.03567)
[4] Felix E. Browder Approximation by solutions of partial differential equations, Am. J. Math., Volume 84 (1962) no. 1, pp. 134-160 | DOI | MR
[5] Felix E. Browder Functional analysis and partial differential equations. II, Math. Ann., Volume 145 (1962) no. 2, pp. 81-226 | DOI | MR
[6] Luis Caffarelli; Luis Silvestre An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equations, Volume 32 (2007) no. 8, pp. 1245-1260 | DOI | MR
[7] Xinlin Cao; Yi-Hsuan Lin; Hongyu Liu Simultaneously recovering potentials and embedded obstacles for anisotropic fractional Schrödinger operators (2017) (https://arxiv.org/abs/1712.00937)
[8] Xinlin Cao; Hongyu Liu Determining a fractional Helmholtz system with unknown source and medium parameter (2018) (https://arxiv.org/abs/1803.09538)
[9] Alessandro Carbotti; Serena Dipierro; Enrico Valdinoci Local density of Caputo-stationary functions of any order (2018) (https://arxiv.org/abs/1809.04005)
[10] Alessandro Carbotti; Serena Dipierro; Enrico Valdinoci Local density of solutions of time and space fractional equations (2018) (https://arxiv.org/abs/1810.08448)
[11] Mihajlo Cekić; Yi-Hsuan Lin; Angkana Rüland The Calderón problem for the fractional Schrödinger equation with drift (2018) (https://arxiv.org/abs/1810.04211)
[12] Giovanni Covi Inverse problems for a fractional conductivity equation (2018) (https://arxiv.org/abs/1810.06319, to appear in Nonlinear Anal.)
[13] Serena Dipierro; Ovidiu Savin; Enrico Valdinoci All functions are locally -harmonic up to a small error, J. Eur. Math. Soc., Volume 19 (2017) no. 4, pp. 957-966 | DOI | MR | Zbl
[14] Serena Dipierro; Ovidiu Savin; Enrico Valdinoci Local approximation of arbitrary functions by solutions of nonlocal equations, J. Geom. Anal., Volume 29 (2019) no. 2, pp. 1428-1455 | DOI | MR | Zbl
[15] Giampiero Palatucci Eleonora Di Nezza; Enrico Valdinoci Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521-573 | MR | Zbl
[16] Alberto Enciso; María-Ángeles García-Ferrero; Daniel Peralta-Salas Approximation theorems for parabolic equations and movement of local hot spots (2017) (https://arxiv.org/abs/1710.03782, to appear in Duke Math. J.)
[17] Alberto Enciso; María-Ángeles García-Ferrero; Daniel Peralta-Salas Minimal surfaces with micro-oscillations, J. Differ. Equations, Volume 265 (2018) no. 8, pp. 3339-3344 | DOI
[18] Alberto Enciso; Daniel Peralta-Salas Knots and links in steady solutions of the Euler equation, Ann. Math., Volume 175 (2012) no. 1, pp. 345-367 | DOI | MR | Zbl
[19] Mouhamed Moustapha Fall; Veronica Felli Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Commun. Partial Differ. Equations, Volume 39 (2014) no. 2, pp. 354-397 | DOI | MR
[20] Mouhamed Moustapha Fall; Veronica Felli Unique continuation properties for relativistic Schrödinger operators with a singular potential, Discrete Contin. Dyn. Syst., Volume 35 (2015) no. 12, pp. 5827-5867 | DOI
[21] Tuhin Ghosh; Yi-Hsuan Lin; Jingni Xiao The Calderón problem for variable coefficients nonlocal elliptic operators, Commun. Partial Differ. Equations, Volume 42 (2017) no. 12, pp. 1923-1961 | DOI
[22] Tuhin Ghosh; Angkana Rüland; Mikko Salo; Gunther Uhlmann Uniqueness and reconstruction for the fractional Calderón problem with a single measurement (2018) (https://arxiv.org/abs/1801.04449)
[23] Tuhin Ghosh; Mikko Salo; Gunther Uhlmann The Calderón problem for the fractional Schrödinger equation (2016) (https://arxiv.org/abs/1609.09248, to appear in Anal. PDE)
[24] Bastian Harrach; Yi-Hsuan Lin Monotonicity-based inversion of the fractional Schrödinger equation (2017) (https://arxiv.org/abs/1711.05641)
[25] Bangti Jin; William Rundell A tutorial on inverse problems for anomalous diffusion processes, Inverse Probl., Volume 31 (2015) no. 3, 035003, 40 pages | MR | Zbl
[26] Moritz Kassmann The classical Harnack inequality fails for non-local operators (2007) (SFB preprint)
[27] Moritz Kassmann A new formulation of Harnack’s inequality for nonlocal operators, C. R. Math. Acad. Sci. Paris, Volume 349 (2011) no. 11-12, pp. 637-640 | DOI | MR
[28] Carlos Kenig; Mikko Salo The Calderón problem with partial data on manifolds and applications, Anal. PDE, Volume 6 (2003) no. 8, pp. 2003-2048 | DOI
[29] Carlos Kenig; Mikko Salo Recent progress in the Calderón problem with partial data, Inverse problems and applications (Contemporary Mathematics), Volume 615, American Mathematical Society, 2014, pp. 193-222 | Zbl
[30] Herbert Koch; Angkana Rüland; Wenhui Shi The variable coefficient thin obstacle problem: Carleman inequalities, Adv. Math., Volume 301 (2016), pp. 820-866 | DOI | MR
[31] Herbert Koch; Daniel Tataru Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients, Commun. Pure Appl. Math., Volume 54 (2001) no. 3, pp. 339-360 | DOI | MR | Zbl
[32] Robert V. Kohn; Michael Vogelius Determining conductivity by boundary measurements II. Interior results, Commun. Pure Appl. Math., Volume 38 (1985) no. 5, pp. 643-667 | DOI | MR | Zbl
[33] Ru-Yu Lai; Yi-Hsuan Lin Global uniqueness for the semilinear fractional Schrödinger equation (2017) (https://arxiv.org/abs/1710.07404)
[34] Peter D. Lax A stability theorem for solutions of abstract differential equations, and its application to the study of the local behavior of solutions of elliptic equations, Commun. Pure Appl. Math., Volume 9 (1956) no. 4, pp. 747-766 | MR | Zbl
[35] Bernard Malgrange Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, Volume 6 (1956), pp. 271-355 | DOI | Numdam | Zbl
[36] William McLean Strongly elliptic systems and boundary integral equations, Cambridge University Press, 2000 | Zbl
[37] Marcel Riesz Intégrales de Riemann–Liouville et potentiels, Acta Litt. Sci. Szeged, Volume 9 (1938), pp. 1-42 | Zbl
[38] Angkana Rüland Unique continuation for fractional Schrödinger equations with rough potentials, Commun. Partial Differ. Equations, Volume 40 (2015) no. 1, pp. 77-114 | DOI
[39] Angkana Rüland Quantitative invertibility and approximation for the truncated Hilbert and Riesz transforms (2017) (https://arxiv.org/abs/1708.04285, to appear in Rev. Mat. Iberoam.)
[40] Angkana Rüland; Mikko Salo The fractional Calderón problem: Low regularity and stability (2017) (https://arxiv.org/abs/1708.06294, to appear in Nonlinear Anal.)
[41] Angkana Rüland; Mikko Salo Quantitative approximation properties for the fractional heat equation (2017) (https://arxiv.org/abs/1708.06300, to appear in Math. Control Relat. Fields)
[42] Angkana Rüland; Mikko Salo Quantitative Runge approximation and inverse problems, Int. Math. Res. Not. (2017), rnx301 | DOI
[43] Angkana Rüland; Eva Sincich Lipschitz stability for the finite dimensional fractional Calderón problem with finite Cauchy data (2018) (https://arxiv.org/abs/1805.00866, to appear in Inverse Probl. Imaging)
[44] Carl Runge Zur Theorie der eindeutigen analytischer Funktionen, Acta Math., Volume 6 (1885), pp. 229-244 | DOI | Zbl
[45] Ihyeok Seo Unique continuation for fractional Schrödinger operators in three and higher dimensions, Proc. Am. Math. Soc., Volume 143 (2015) no. 4, pp. 1661-1664 | Zbl
[46] Nicola Soave; Susanna Terracini The nodal set of solutions to some elliptic problems: singular nonlinearities (2018) (https://arxiv.org/abs/1803.06637)
[47] Nicola Soave; Susanna Terracini The nodal set of solutions to some elliptic problems: sublinear equations, and unstable two-phase membrane problem (2018) (https://arxiv.org/abs/1802.02089)
[48] Daniel Tataru Carleman estimates and unique continuation for solutions to boundary value problems, J. Math. Pures Appl., Volume 75 (1996) no. 4, pp. 367-408 | MR
[49] Daniel Tataru Unique continuation problems for partial differential equations, Geometric methods in inverse problems and PDE control (The IMA Volumes in Mathematics and its Applications), Volume 137, Springer, 2004, pp. 239-255 | DOI | MR | Zbl
[50] Gunther Uhlmann Electrical impedance tomography and Calderón’s problem, Inverse Probl., Volume 25 (2009) no. 12, 123011, 39 pages | Zbl
[51] Rainer Verch Antilocality and a Reeh–Schlieder theorem on manifolds, Lett. Math. Phys., Volume 28 (1993) no. 2, pp. 143-154 | DOI | MR | Zbl
[52] Hui Yu Unique continuation for fractional orders of elliptic equations, Ann. PDE, Volume 3 (2017) no. 2, 16, 21 pages | MR | Zbl
[53] Enrique Zuazua Controllability and observability of partial differential equations: some results and open problems, Handbook of differential equations: Evolutionary equations, Volume 3, Elsevier, 2007, pp. 527-621 | Zbl
Cited by Sources: