For potentials and with compact support, we consider the Schrödinger equation with fixed positive energy . Under a mild additional regularity hypothesis, and with fixed magnetic potential , we show that the scattering solutions uniquely determine the electric potential . For this we develop the method of Bukhgeim for the purely electric Schrödinger equation.
@incollection{JEDP_2018____A7_0, author = {Pedro Caro and Keith M. Rogers}, title = {Unique determination of the electric potential in the presence of a fixed magnetic potential in the plane}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:7}, pages = {1--9}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2018}, doi = {10.5802/jedp.667}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.667/} }
TY - JOUR AU - Pedro Caro AU - Keith M. Rogers TI - Unique determination of the electric potential in the presence of a fixed magnetic potential in the plane JO - Journées équations aux dérivées partielles N1 - talk:7 PY - 2018 SP - 1 EP - 9 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.667/ DO - 10.5802/jedp.667 LA - en ID - JEDP_2018____A7_0 ER -
%0 Journal Article %A Pedro Caro %A Keith M. Rogers %T Unique determination of the electric potential in the presence of a fixed magnetic potential in the plane %J Journées équations aux dérivées partielles %Z talk:7 %D 2018 %P 1-9 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.667/ %R 10.5802/jedp.667 %G en %F JEDP_2018____A7_0
Pedro Caro; Keith M. Rogers. Unique determination of the electric potential in the presence of a fixed magnetic potential in the plane. Journées équations aux dérivées partielles (2018), Talk no. 7, 9 p. doi : 10.5802/jedp.667. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.667/
[1] Alexey D. Agaltsov A global uniqueness result for acoustic tomography of moving fluid, Bull. Sci. Math., Volume 139 (2015) no. 8, pp. 937-942 | Zbl
[2] Pierre Albin; Colin Guillarmou; Leo Tzou; Gunther Uhlmann Inverse boundary problems for systems in two dimensions, Ann. Henri Poincaré, Volume 14 (2013) no. 6, pp. 1551-1571 | Zbl
[3] Kari Astala; Daniel Faraco; Keith M. Rogers Recovery of the Dirichlet-to-Neumann map from scattering data in the plane, RIMS Kôkyûroku Bessatsu, Volume 49 (2014), pp. 65-73 | Zbl
[4] Kari Astala; Daniel Faraco; Keith M. Rogers Unbounded potential recovery in the plane, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 5, pp. 1027-1051 | Zbl
[5] Jöran Bergh; Jörgen Löfström Interpolation spaces. An introduction, Grundlehren der Mathematischen Wissenschaften, 223, Springer, 1976 | Zbl
[6] Eemeli Blåsten On the Gel’fand–Calderón inverse problem in two dimensions, University of Helsinki (Finland) (2013) (Ph. D. Thesis)
[7] Eemeli Blåsten; Oleg Imanuvilov; Masahiro Yamamoto Stability and Uniqueness for a two-dimensional inverse boundary value problem for less regular potentials, Inverse Probl. Imaging, Volume 9 (2015) no. 3, pp. 709-723 | Zbl
[8] Eemeli Blåsten; Leo Tzou; Jenn-Nan Wang Uniqueness for the inverse boundary value problem with singular potentials in 2D (2018) (https://arxiv.org/abs/1704.06397)
[9] Alexandre L. Bukhgeǐm Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl., Volume 16 (2008) no. 1, pp. 19-33 | Zbl
[10] Gregory Eskin; James V. Ralston Inverse scattering problem for the Schrödinger equation with magnetic potential at fixed energy, Commun. Math. Phys., Volume 173 (1995), pp. 199-224 | Zbl
[11] Gregory Eskin; James V. Ralston Inverse scattering problems for Schrödinger operators with magnetic and electric potentials, Inverse problems in wave propagation (The IMA Volumes in Mathematics and its Applications), Volume 90, Springer, 1997, pp. 147-166 | Zbl
[12] Colin Guillarmou; Leo Tzou Identification of a connection from Cauchy data on a Riemann surface with boundary, Geom. Funct. Anal., Volume 21 (2011) no. 2, pp. 393-418 | Zbl
[13] Boaz Haberman Unique determination of a magnetic Schrödinger operator with unbounded magnetic potential from boundary data, Int. Math. Res. Not., Volume 2018 (2018) no. 4, pp. 1080-1128 | Zbl
[14] Oleg Imanuvilov; Gunther Uhlmann; Masahiro Yamamoto Partial Cauchy data for general second order elliptic operators in two dimensions, Publ. Res. Inst. Math. Sci., Volume 48 (2012) no. 4, pp. 971-1055 | Zbl
[15] Victor Isakov; Adrian Nachman Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Am. Math. Soc., Volume 347 (1995) no. 9, pp. 3375-3390 | Zbl
[16] Katsiaryna Krupchyk; Gunther Uhlmann Uniqueness in an inverse boundary problem for a magnetic Schrödinger operator with a bounded magnetic potential, Commun. Math. Phys., Volume 327 (2014) no. 3, pp. 993-1009 | Zbl
[17] Evgeny Lakshtanov; Jorge Tejero; Boris Vainberg Uniqueness in the inverse conductivity problem for complex-valued Lipschitz conductivities in the plane, SIAM J. Math. Anal., Volume 49 (2017) no. 5, pp. 3766-3775 | Zbl
[18] Evgeny Lakshtanov; Boris Vainberg Recovery of -potential in the plane, J. Inverse Ill-Posed Probl., Volume 25 (2017), pp. 633-651 | Zbl
[19] Adrian Nachman Global uniqueness for a two-dimensional inverse boundary value problem, Ann. Math., Volume 142 (1995) no. 1, pp. 71-96 | Zbl
[20] Adrian Nachman; John Sylvester; Gunther Uhlmann An -dimensional Borg-Levinson theorem, Commun. Math. Phys., Volume 115 (1988) no. 4, pp. 595-605 | Zbl
[21] Gen Nakamura; Ziqi Sun; Gunther Uhlmann Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Ann., Volume 303 (1995) no. 3, pp. 377-388 | Zbl
[22] Lassi Päivärinta; Mikko Salo; Gunther Uhlmann Inverse scattering for the magnetic Schrödinger operator, J. Funct. Anal., Volume 259 (2010) no. 7, pp. 1771-1798 | Zbl
[23] Mikko Salo Inverse problems for nonsmooth first order perturbations of the Laplacian, Annales Academiæ Scientiarum Fennicæ. Mathematica. Dissertationes, 139, Suomalainen Tiedeakatemia, 2004 | Zbl
[24] Mikko Salo Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field, Commun. Partial Differ. Equations, Volume 31 (2006) no. 11, pp. 1639-1666 | Zbl
[25] Mikko Salo Inverse boundary value problems for the magnetic Schrödinger equation, Proceedings Inverse Problems in Applied Sciences (Sapporo 2006) (Journal of Physics: Conference Series), Volume 73, IOP Publishing, 2007 | DOI
[26] David dos Santos Ferreira; Carlos E. Kenig; Johannes Sjöstrand; Gunther Uhlmann Determining a Magnetic Schrödinger Operator from Partial Cauchy Data, Commun. Math. Phys., Volume 271 (2007) no. 2, pp. 467-488 | Zbl
[27] Elias M. Stein Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993 | Zbl
[28] Ziqi Sun An inverse boundary value problem for Schrödinger operators with vector potentials, Trans. Am. Math. Soc., Volume 338 (1993) no. 2, pp. 953-969 | Zbl
[29] Jorge Tejero Reconstruction and stability for piecewise smooth potentials in the plane, SIAM J. Math. Anal., Volume 49 (2017) no. 1, pp. 398-420 | Zbl
[30] Jorge Tejero Reconstruction of rough potentials in the plane (2018) (https://arxiv.org/abs/1811.09481)
[31] Jorge Tejero On the method of Bukhgeim for two-dimensional inverse problems, Universidad Autónoma de Madrid (Spain) (2019) (Ph. D. Thesis)
Cited by Sources: