In the joint work with Amandine Aftalion [3], we describe the ground states of a rotating two-component Bose–Einstein condensate in two dimensions. In the regime we consider, both a one-dimensional interface between the two components, and zero-dimensional interfaces (vortices) are present and contribute to the energy. The difficulty is that the two contributions are not of the same order, and to show that they somehow decouple requires a precise localisation of the line energy.
@incollection{JEDP_2018____A9_0, author = {Etienne Sandier}, title = {Description of the ground state for a model of two-component rotating {Bose{\textendash}Einstein} condensates.}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:9}, pages = {1--7}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2018}, doi = {10.5802/jedp.669}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.669/} }
TY - JOUR AU - Etienne Sandier TI - Description of the ground state for a model of two-component rotating Bose–Einstein condensates. JO - Journées équations aux dérivées partielles N1 - talk:9 PY - 2018 SP - 1 EP - 7 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.669/ DO - 10.5802/jedp.669 LA - en ID - JEDP_2018____A9_0 ER -
%0 Journal Article %A Etienne Sandier %T Description of the ground state for a model of two-component rotating Bose–Einstein condensates. %J Journées équations aux dérivées partielles %Z talk:9 %D 2018 %P 1-7 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.669/ %R 10.5802/jedp.669 %G en %F JEDP_2018____A9_0
Etienne Sandier. Description of the ground state for a model of two-component rotating Bose–Einstein condensates.. Journées équations aux dérivées partielles (2018), Talk no. 9, 7 p. doi : 10.5802/jedp.669. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.669/
[1] Amandine Aftalion Vortices in Bose–Einstein Condensates, Progress in Nonlinear Differential Equations and their Applications, 67, Birkhäuser, 2006 | Zbl
[2] Amandine Aftalion A minimal interface problem arising from a two component Bose–Einstein condensate via Gamma-convergence, Calc. Var. Partial Differ. Equ., Volume 52 (2015) no. 1-2, pp. 165-197 | Zbl
[3] Amandine Aftalion; Etienne Sandier Vortex patterns and vortex sheets in segragated two-component Bose–Einstein condensates (2019) (https://arxiv.org/abs/1901.08307)
[4] Nicholas D. Alikakos; A. C. Faliagas Stability Criteria for Multiphase Partitioning Problems with Volume Constraints (2015) (https://arxiv.org/abs/1509.08860)
[5] Michael Goldman Sharp interface limit for two components Bose–Einstein condensates (2014) (https://arxiv.org/abs/1401.1727)
[6] Michael Goldman; Benoït Merlet Phase segregation for binary mixtures of Bose–Einstein Condensates (2015) (https://arxiv.org/abs/1505.07234)
[7] Radu Ignat; Vincent Millot The critical velocity for vortex existence in a two-dimensional rotating Bose–Einstein condensate, J. Funct. Anal., Volume 233 (2006) no. 1, pp. 260-306 | Zbl
[8] Radu Ignat; Vincent Millot Energy expansion and vortex location for a two-dimensional rotating Bose–Einstein condensate, Rev. Math. Phys., Volume 18 (2006) no. 2, pp. 119-162 | Zbl
[9] Robert L. Jerrard; Halil M. Soner The Jacobian and the Ginzburg–Landau energy, Calc. Var. Partial Differ. Equ., Volume 14 (2002) no. 2, pp. 151-191 | Zbl
[10] Robert L. Jerrard; Halil M. Soner Limiting behavior of the Ginzburg–Landau functional, J. Funct. Anal., Volume 192 (2002) no. 2, pp. 524-561 | Zbl
[11] Giovanni Leoni; Ryan Murray Second-Order -limit for the Cahn-Hilliard Functional (2015) (https://arxiv.org/abs/1503.07272)
[12] Luciano Modica; Salvatore Mortola Il limite nella -convergenza di una famiglia di funzionali ellittici, Boll. Un. Mat. Ital. A, Volume 14 (1977) no. 3, pp. 526-529
[13] Etienne Sandier; Sylvia Serfaty Vortices in the magnetic Ginzburg–Landau model, Progress in Nonlinear Differential Equations and their Applications, 70, Birkhäuser, 2008 | Zbl
[14] Sylvia Serfaty On a model of rotating superfluids, ESAIM, Control Optim. Calc. Var., Volume 6 (2001), pp. 201-238 | Zbl
[15] Peter Sternberg The effect of a singular perturbation on nonconvex variational problems, Arch. Ration. Mech. Anal., Volume 101 (1988) no. 3, pp. 209-260 | Zbl
Cited by Sources: