We review some recent analysis results and open perspectives around congestion phenomena in fluid equations. The PDE systems under study are based on Navier–Stokes equations in which congestion is encoded in a maximal density constraint. The paper is organized around three main topics: multi-scale issues, regularity issues and finally non-locality issues.
@incollection{JEDP_2018____A6_0, author = {Charlotte Perrin}, title = {An overview on congestion phenomena in fluid equations}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:6}, pages = {1--34}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2018}, doi = {10.5802/jedp.666}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.666/} }
TY - JOUR AU - Charlotte Perrin TI - An overview on congestion phenomena in fluid equations JO - Journées équations aux dérivées partielles N1 - talk:6 PY - 2018 SP - 1 EP - 34 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.666/ DO - 10.5802/jedp.666 LA - en ID - JEDP_2018____A6_0 ER -
%0 Journal Article %A Charlotte Perrin %T An overview on congestion phenomena in fluid equations %J Journées équations aux dérivées partielles %Z talk:6 %D 2018 %P 1-34 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.666/ %R 10.5802/jedp.666 %G en %F JEDP_2018____A6_0
Charlotte Perrin. An overview on congestion phenomena in fluid equations. Journées équations aux dérivées partielles (2018), Talk no. 6, 34 p. doi : 10.5802/jedp.666. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.666/
[1] Luigi Ambrosio; Nicola Gigli; Giuseppe Savaré Gradient flows: in metric spaces and in the space of probability measures, Lectures in Mathematics, Birkhäuser, 2008 | Zbl
[2] Bruno Andreotti; Yoël Forterre; Olivier Pouliquen Granular media: between fluid and solid, Cambridge University Press, 2013 | Zbl
[3] Patrick Ballard Formulation and well-posedness of the dynamics of rigid-body systems with perfect unilateral constraints, Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., Volume 359 (2001) no. 1789, pp. 2327-2346 | Zbl
[4] Sylvie Benzoni-Gavage; Denis Serre Multidimensional hyperbolic partial differential equations, Oxford Mathematical Monographs, Oxford University Press, 2007 | Zbl
[5] Florent Berthelin Existence and weak stability for a pressureless model with unilateral constraint, Math. Models Methods Appl. Sci., Volume 12 (2002) no. 2, pp. 249-272 | Zbl
[6] Florent Berthelin Theoretical study of a multidimensional pressureless model with unilateral constraint, SIAM J. Math. Anal., Volume 49 (2017) no. 3, pp. 2287-2320
[7] Florent Berthelin; Damien Broizat A model for the evolution of traffic jams in multi-lane, Kinet. Relat. Models, Volume 5 (2012) no. 4, pp. 697-728 | Zbl
[8] Florent Berthelin; Pierre Degond; Marcello Delitala; Michel Rascle A model for the formation and evolution of traffic jams, Arch. Ration. Mech. Anal., Volume 187 (2008) no. 2, pp. 185-220 | Zbl
[9] Edoardo Bocchi Floating structures in shallow water: local well-posedness in the axisymmetric case (2018) (https://arxiv.org/abs/1802.07643)
[10] François Bouchut On zero pressure gas dynamics, Advances in kinetic theory and computing: selected papers (Series on Advances in Mathematics for Applied Sciences), Volume 22, World Scientific, 1994, pp. 171-190 | Zbl
[11] François Bouchut; Yann Brenier; Julien Cortes; J.-F. Ripoll A hierarchy of models for two-phase flows, J. Nonlinear Sci., Volume 10 (2000) no. 6, pp. 639-660 | Zbl
[12] Christian Bourdarias; Mehmet Ersoy; Stéphane Gerbi A mathematical model for unsteady mixed flows in closed water pipes, Sci. China, Math., Volume 55 (2012) no. 2, pp. 221-244 | Zbl
[13] Mehdi Bouzid; Adrien Izzet; Martin Trulsson; Eric Clément; Philippe Claudin; Bruno Andreotti Non-local rheology in dense granular flows, Eur. Phys. J. E, Volume 38 (2015) no. 11, 125 pages | DOI
[14] Yann Brenier; Wilfrid Gangbo; Giuseppe Savaré; Michael Westdickenberg Sticky particle dynamics with interactions, J. Math. Pures Appl., Volume 99 (2013) no. 5, pp. 577-617 | Zbl
[15] Yann Brenier; Emmanuel Grenier Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., Volume 35 (1998) no. 6, pp. 2317-2328 | Zbl
[16] Didier Bresch; Benoît Desjardins On the construction of approximate solutions for the 2D viscous shallow water model and for compressible Navier–Stokes models, J. Math. Pures Appl., Volume 86 (2006) no. 4, pp. 362-368 | Zbl
[17] Didier Bresch; Sarka Necasova; Charlotte Perrin Compression effects in heterogeneous media (2018) (https://arxiv.org/abs/1807.06360)
[18] Didier Bresch; Charlotte Perrin; Ewelina Zatorska Singular limit of a Navier–Stokes system leading to a free/congested zones two-phase model, C. R. Math. Acad. Sci. Paris, Volume 352 (2014) no. 9, pp. 685-690 | Zbl
[19] Didier Bresch; Michael Renardy Development of congestion in compressible flow with singular pressure, Asymptotic Anal., Volume 103 (2017) no. 1-2, pp. 95-101 | Zbl
[20] Fabio Cavalletti; Marc Sedjro; Michael Westdickenberg A simple proof of global existence for the 1d pressureless gas dynamics equations, SIAM J. Math. Anal., Volume 47 (2015) no. 1, pp. 66-79 | Zbl
[21] Oana Cazacu; Ioan R. Ionescu; Thomas Perrot Steady-state flow of compressible rigid–viscoplastic media, Int. J. Eng. Sci., Volume 44 (2006) no. 15-16, pp. 1082-1097 | Zbl
[22] Anne-Laure Dalibard; Charlotte Perrin Existence and stability of partially congested propagation fronts in a one-dimensional Navier–Stokes model (2019) (https://arxiv.org/abs/1902.02982)
[23] Pierre Degond; Jiale Hua; Laurent Navoret Numerical simulations of the Euler system with congestion constraint, J. Comput. Phys., Volume 230 (2011) no. 22, pp. 8057-8088 | Zbl
[24] Pierre Degond; Piotr Minakowski; Laurent Navoret; Ewelina Zatorska Finite volume approximations of the Euler system with variable congestion, Comput. Fluids, Volume 169 (2017), pp. 23-39 | Zbl
[25] Pierre Degond; Piotr Minakowski; Ewelina Zatorska Transport of congestion in two-phase compressible/incompressible flows, Nonlinear Anal., Real World Appl., Volume 42 (2018), pp. 485-510 | Zbl
[26] Irina Denisova; Vsevolod Solonnikov Local and global solvability of free boundary problems for the compressible Navier–Stokes equations near equilibria, Handbook of mathematical analysis in mechanics of viscous fluids (Springer Reference), Springer, 2018, pp. 1-88 | Zbl
[27] Eduard Feireisl Dynamics of viscous compressible fluids, Oxford Lecture Series in Mathematics and its Applications, 26, Oxford University Press, 2004 | Zbl
[28] Eduard Feireisl; Bum Ja Jin; Antonín Novotný Relative entropies, suitable weak solutions and weak-strong uniqueness for the compressible Navier–Stokes system, J. Math. Fluid Mech., Volume 14 (2012) no. 4, pp. 717-730 | Zbl
[29] Eduard Feireisl; Yong Lu; Josef Málek On PDE analysis of flows of quasi-incompressible fluids, ZAMM, Z. Angew. Math. Mech., Volume 96 (2016) no. 4, pp. 491-508 | DOI
[30] Eduard Feireisl; Yong Lu; Antonín Novotný Weak-strong uniqueness for the compressible Navier–Stokes equations with a hard-sphere pressure law, Sci. China Math., Volume 61 (2018) no. 11, pp. 2003-2016 | DOI
[31] Eduard Feireisl; Antonín Novotný Singular limits in thermodynamics of viscous fluids, Advances in Mathematical Fluid Mechanics, Springer, 2009 | Zbl
[32] Martin Fuchs; Gregory Seregin Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lecture Notes in Mathematics, 1749, Springer, 2000 | Zbl
[33] Edwige Godlewski; Martin Parisot; Jacques Sainte-Marie; Fabien Wahl Congested shallow water model: floating object (2018) (https://hal.inria.fr/hal-01871708)
[34] Edwige Godlewski; Martin Parisot; Jacques Sainte-Marie; Fabien Wahl Congested shallow water model: roof modelling in free surface flow, ESAIM, Math. Model. Numer. Anal., Volume 52 (2018) no. 5, pp. 1679-1707 | Zbl
[35] Sophie Hecht; Nicolas Vauchelet Incompressible limit of a mechanical model for tissue growth with non-overlapping constraint, Commun. Math. Sci., Volume 15 (2017) no. 7, pp. 1913-1932 | Zbl
[36] Tatsuo Iguchi; David Lannes Hyperbolic free boundary problems and applications to wave-structure interactions (2018) (https://arxiv.org/abs/1806.07704)
[37] Stéphane Labbé; Emmanuel Maitre A free boundary model for Korteweg fluids as a limit of barotropic compressible Navier–Stokes equations, Methods and Applications of Analysis, Volume 20 (2013) no. 2, pp. 165-178 | DOI
[38] David Lannes On the dynamics of floating structures, Ann. PDE, Volume 3 (2017) no. 1, 11, 81 pages | Zbl
[39] Aline Lefebvre Modélisation numérique d’écoulements fluide-particules: prise en compte des forces de lubrification, Université Paris Sud - Paris XI (France) (2007) (Ph. D. Thesis)
[40] Aline Lefebvre Numerical simulation of gluey particles, ESAIM, Math. Model. Numer. Anal., Volume 43 (2009) no. 1, pp. 53-80 | Zbl
[41] Aline Lefebvre-Lepot; Bertrand Maury Micro-macro modelling of an array of spheres interacting through lubrication forces, Adv. Math. Sci. Appl., Volume 21 (2011) no. 2, pp. 535-557 | Zbl
[42] Pierre-Louis Lions Mathematical topics in fluid mechanics. Vol. 1: Incompressible models, Oxford Lecture Series in Mathematics and its Applications, 3, Oxford University Press, 1996 | Zbl
[43] Pierre-Louis Lions Mathematical topics in fluid mechanics: Vol. 2: Compressible Models, Oxford Lecture Series in Mathematics and its Applications, 10, Oxford University Press, 1998 | Zbl
[44] Pierre-Louis Lions; Nader Masmoudi On a free boundary barotropic model, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 16 (1999) no. 3, pp. 373-410 | Zbl
[45] Josef Málek; Jindřich Nečas; Kumbakonam Rajagopal Global analysis of the flows of fluids with pressure-dependent viscosities, Arch. Ration. Mech. Anal., Volume 165 (2002) no. 3, pp. 243-269 | Zbl
[46] Josef Málek; Kumbakonam Rajagopal Mathematical properties of the solutions to the equations governing the flow of fluids with pressure and shear rate dependent viscosities, Handbook of mathematical fluid dynamics 4, Elsevier, 2007, pp. 407-444 | DOI
[47] Arthur Marly Analyse mathématique et numérique d’écoulements de fluides à seuil, Ãcole Normale Supérieure de Lyon (France) (2018) (Ph. D. Thesis)
[48] Bertrand Maury A gluey particle model, ESAIM, Proc., Volume 18 (2007), pp. 133-142 | Zbl
[49] Bertrand Maury Prise en compte de la congestion dans les modeles de mouvements de foules, Actes des colloques EDP-Normandie (Caen 2010 - Rouen 2011, Fédération Normandie-Mathématiques, 2012, pp. 7-20 | Zbl
[50] Bertrand Maury; Aude Roudneff-Chupin; Filippo Santambrogio A macroscopic crowd motion model of gradient flow type, Math. Models Methods Appl. Sci., Volume 20 (2010) no. 10, pp. 1787-1821 | Zbl
[51] Bertrand Maury; Aude Roudneff-Chupin; Filippo Santambrogio; Juliette Venel Handling congestion in crowd motion modeling, Netw. Heterog. Media, Volume 6 (2011) no. 3, pp. 485-519 | Zbl
[52] A. Mellet; A. Vasseur On the barotropic compressible Navier–Stokes equations, Commun. Partial Differ. Equations, Volume 32 (2007) no. 3, pp. 431-452 | DOI
[53] Luca Natile; Giuseppe Savaré A Wasserstein approach to the one-dimensional sticky particle system, SIAM J. Math. Anal., Volume 41 (2009) no. 4, pp. 1340-1365 | Zbl
[54] Edward Nelson Dynamical theories of Brownian motion, Mathematical Notes, Princeton University Press, 1967 | Zbl
[55] Antonín Novotný; Ivan Straškraba Introduction to the mathematical theory of compressible flow, Oxford Lecture Series in Mathematics and its Applications, 27, Oxford University Press, 2004 | Zbl
[56] Mikhail Perepelitsa On the global existence of weak solutions for the Navierâ-Stokes equations of compressible fluid flows, SIAM J. Math. Anal., Volume 38 (2006) no. 4, pp. 1126-1153 | Zbl
[57] Charlotte Perrin Pressure-dependent viscosity model for granular media obtained from compressible Navier–Stokes equations, AMRX, Appl. Math. Res. Express, Volume 2016 (2016) no. 2, pp. 289-333 | Zbl
[58] Charlotte Perrin Modelling of phase transitions in one-dimensional granular flows, ESAIM, Proc. Surv., Volume 58 (2017), pp. 78-97 | Zbl
[59] Charlotte Perrin; M. Westdickenberg One-dimensional granular system with memory effects, SIAM J. Math. Anal., Volume 50 (2018) no. 6, pp. 5921-5946 | Zbl
[60] Charlotte Perrin; Ewelina Zatorska Free/congested two-phase model from weak solutions to multi-dimensional compressible Navier–Stokes equations, Commun. Partial Differ. Equations, Volume 40 (2015) no. 8, pp. 1558-1589 | Zbl
[61] Benoît Perthame; Fernando Quirós; Juan Luis Vázquez The Hele–Shaw asymptotics for mechanical models of tumor growth, Arch. Ration. Mech. Anal., Volume 212 (2014) no. 1, pp. 93-127 | Zbl
[62] Benoît Perthame; Nicolas Vauchelet Incompressible limit of a mechanical model of tumor growth with viscosity, Philos. Trans. A, R. Soc. Lond., Volume 373 (2015) no. 2050, 2014283, 16 pages | Zbl
[63] Olivier Pouliquen; Yoël Forterre A non-local rheology for dense granular flows, Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., Volume 367 (2009) no. 1909, pp. 5091-5107 | Zbl
[64] Anthony Preux Transport optimal et équations des gaz sans pression avec contrainte de densité maximale, Université Paris-Saclay (France) (2016) (Ph. D. Thesis)
[65] Michael Renardy Some remarks on the Navier–Stokes equations with a pressure-dependent viscosity, Commun. Partial Differ. Equations, Volume 11 (1986), pp. 779-793 | Zbl
[66] Denis Serre Systems of Conservation Laws 1: Hyperbolicity, entropies, shock waves, Cambridge University Press, 1999 | Zbl
[67] Yoshihiro Shibata On the -boundedness for the two phase problem with phase transition: Compressible-incompressible model problem, Funkc. Ekvacioj, Ser. Int., Volume 59 (2016) no. 2, pp. 243-287 | Zbl
[68] V. A. Vaigant; Alexandre V. Kazhikhov On existence of global solutions to the two-dimensional Navier–Stokes equations for a compressible viscous fluid, Sib. Math. J., Volume 36 (1995) no. 6, pp. 1108-1141 | Zbl
[69] Nicolas Vauchelet; Ewelina Zatorska Incompressible limit of the Navier–Stokes model with a growth term, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, Volume 163 (2017), pp. 34-59 | Zbl
Cited by Sources: