The focusing cubic NLS is a canonical model for the propagation of laser beams. In dimensions 2 and 3, it is known that a large class of initial data leads to finite time blow-up. Now, physical experiments suggest that this blow-up does not always occur. This might be explained by the fact that some physical phenomena neglected by the standard NLS model become relevant at large intensities of the beam. We derive from Maxwell’s equations some known variants of NLS and propose some new ones, providing rigorous error estimates for all the models considered. These notes result from the work [9], in collaboration with D. Lannes and J. Szeftel.
@incollection{JEDP_2018____A1_0, author = {\'Eric Dumas}, title = {Some variants of the focusing {NLS} equations}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:1}, pages = {1--15}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2018}, doi = {10.5802/jedp.661}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.661/} }
TY - JOUR AU - Éric Dumas TI - Some variants of the focusing NLS equations JO - Journées équations aux dérivées partielles N1 - talk:1 PY - 2018 SP - 1 EP - 15 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.661/ DO - 10.5802/jedp.661 LA - en ID - JEDP_2018____A1_0 ER -
%0 Journal Article %A Éric Dumas %T Some variants of the focusing NLS equations %J Journées équations aux dérivées partielles %Z talk:1 %D 2018 %P 1-15 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.661/ %R 10.5802/jedp.661 %G en %F JEDP_2018____A1_0
Éric Dumas. Some variants of the focusing NLS equations. Journées équations aux dérivées partielles (2018), Talk no. 1, 15 p. doi : 10.5802/jedp.661. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.661/
[1] Paolo Antonelli; Jack Arbunich; Christof Sparber Regularizing nonlinear Schrödinger equations through partial off-axis variations, SIAM J. Math. Anal., Volume 51 (2019) no. 1, pp. 110-130 | Zbl
[2] Jack Arbunich; Christian Klein; Christof Sparber On a class of derivative Nonlinear Schrödinger-type equations in two spatial dimensions (2018) (https://arxiv.org/abs/1805.12351, to appear in Math. Model. Anal.)
[3] Luc Bergé; Stefan Skupin Modeling ultrashort filaments of light, Discrete Contin. Dyn. Syst., Volume 23 (2009) no. 4, pp. 1099-1139 | Zbl
[4] Luc Bergé; Stefan Skupin; Rachel Nuter; Jérôme Kasparian; Jean-Pierre Wolf Ultrashort filaments of light in weakly ionized, optically transparent media, Rep. Prog. Phys., Volume 70 (2007) no. 10, pp. 1633-1713
[5] Nicolaas Bloembergen Nonlinear optics, Frontiers in Physics, 21, Addison-Wesley, 1977
[6] Mathieu Colin; David Lannes Short pulses approximations in dispersive media, SIAM J. Math. Anal., Volume 41 (2009) no. 2, pp. 708-732 | Zbl
[7] Thierry Colin; Gérard Gallice; Karen Laurioux Intermediate models in nonlinear optics, SIAM J. Math. Anal., Volume 36 (2005) no. 5, pp. 1664-1688 | Zbl
[8] Phillipe Donnat; Jean-Luc Joly; Guy Métivier; Jeffrey Rauch Diffractive nonlinear geometric optics, Sémin. Équ. Dériv. Partielles, Éc. Polytech., Volume 1995-1996 (1996) (Exp. no. 17, 23 pages) | Zbl
[9] Éric Dumas; David Lannes; Jeremie Szeftel Variants of the focusing NLS equation. Derivation, justification and open problems related to filamentation, Laser filamentation. Mathematical methods and models (CRM Series in Mathematical Physics), Springer, 2016, pp. 19-75
[10] Jean Ginibre; Giorgio Velo On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal. (1979), pp. 1-32 | Zbl
[11] Jean-Luc Joly; Guy Metivier; Jeffrey Rauch Diffractive nonlinear geometric optics with rectification, Indiana Univ. Math. J., Volume 47 (1998) no. 4, pp. 1167-1241 | Zbl
[12] Yitzhak Katznelson An introduction to harmonic analysis, Cambridge Mathematical Library, Cambridge University Press, 2004 | Zbl
[13] Miroslav Kolesik; Jerome V. Moloney Nonlinear optical pulse propagation simulation: From maxwell’s to unidirectional equations, Phys. Rev. E, Volume 70 (2004), 036604 | DOI
[14] David Lannes Dispersive effects for nonlinear geometrical optics with rectification, Asymptotic Anal., Volume 18 (1998) no. 1-2, pp. 111-146
[15] David Lannes High-frequency nonlinear optics: from the nonlinear Schrödinger approximation to ultrashort-pulses equations, Proc. R. Soc. Edinb., Sect. A, Math., Volume 141 (2011) no. 2, pp. 253-286 | Zbl
[16] Hendrik A. Lorentz The Theory of Electrons, Dover, 1952
[17] Adelbert Owyoung The origins of the nonlinear refractive indices of liquids and gases, California Institute of Technology (USA) (1971) (Ph. D. Thesis)
[18] Catherine Sulem; Pierre-Louis Sulem The nonlinear Schrödinger equation. Self-focusing and wave collapse, Applied Mathematical Sciences, 139, Springer, 1999 | Zbl
[19] Terence Tao; Monica Visan; Xiaoyi Zhang The nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Partial Differ. Equations, Volume 32 (2007) no. 8, pp. 1281-1343 | Zbl
Cited by Sources: