These notes record and expand the lectures for the “Journées Équations aux Dérivées Partielles 2018” held by the author during the week of June 11-15, 2018. The aim is to give a overview of the classical theory for the obstacle problem, and then present some recent developments on the regularity of the free boundary.
@incollection{JEDP_2018____A2_0, author = {Alessio Figalli}, title = {Free boundary regularity in obstacle problems}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:2}, pages = {1--24}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2018}, doi = {10.5802/jedp.662}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.662/} }
TY - JOUR AU - Alessio Figalli TI - Free boundary regularity in obstacle problems JO - Journées équations aux dérivées partielles N1 - talk:2 PY - 2018 SP - 1 EP - 24 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.662/ DO - 10.5802/jedp.662 LA - en ID - JEDP_2018____A2_0 ER -
%0 Journal Article %A Alessio Figalli %T Free boundary regularity in obstacle problems %J Journées équations aux dérivées partielles %Z talk:2 %D 2018 %P 1-24 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.662/ %R 10.5802/jedp.662 %G en %F JEDP_2018____A2_0
Alessio Figalli. Free boundary regularity in obstacle problems. Journées équations aux dérivées partielles (2018), Talk no. 2, 24 p. doi : 10.5802/jedp.662. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.662/
[1] Ioannis Athanasopoulos; Luis Caffarelli Optimal regularity of lower dimensional obstacle problems, Zap. Nauchn. Semin. (POMI), Volume 310 (2004), pp. 49-66 translation in J. Math. Sci., New York 132 (2006), no. 3, p. 274–284 | Zbl
[2] Ioannis Athanasopoulos; Luis Caffarelli; Sandro Salsa The structure of the free boundary for lower dimensional obstacle problems, Am. J. Math., Volume 130 (2008) no. 2, pp. 485-498 | Zbl
[3] Haïm Brézis; David Kinderlehrer The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J., Volume 23 (1973), pp. 831-844 | Zbl
[4] Luis Caffarelli The regularity of free boundaries in higher dimensions, Acta Math., Volume 139 (1977), pp. 155-184 | Zbl
[5] Luis Caffarelli The obstacle problem revisited, J. Fourier Anal. Appl., Volume 4 (1998) no. 4-5, pp. 383-402 | Zbl
[6] Luis Caffarelli; Nestor Riviere Smoothness and analyticity of free boundaries in variational inequalities, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 3 (1976), pp. 289-310 | Zbl
[7] Luis Caffarelli; Nestor Riviere Asymptotic behavior of free boundaries at their singular points, Ann. Math., Volume 106 (1977), pp. 309-317
[8] Luis Caffarelli; Sandro Salsa A Geometric Approach to Free Boundary Problems, Graduate Studies in Mathematics, 68, American Mathematical Society, 2005 | Zbl
[9] Maria Colombo; Luca Spolaor; Bozhidar Velichkov A logarithmic epiperimetric inequality for the obstacle problem, Geom. Funct. Anal., Volume 28 (2018) no. 4, pp. 1029-1061
[10] Georges Duvaut Problèmes à frontière libre en théorie des milieux continus Rapport de recherche n. 185, INRIA (ex. Laboria I.R.I.A.), 1976
[11] Georges Duvaut Résolution d’un probleme de Stefan (fusion d’un bloc de glace à zéro degré), C. R. Math. Acad. Sci. Paris, Volume 276 (1973), pp. 1461-1463 | Zbl
[12] Lawrence C. Evans Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010 | Zbl
[13] Lawrence C. Evans; Ronald F. Gariepy Measure theory and fine properties of functions, Textbooks in Mathematics, CRC Press, 2015 | Zbl
[14] Alessio Figalli; Xavier Ros-Oton; Joaquim Serra On the singular set in the Stefan problem and a conjecture of Schaeffer (2018) (work in progress)
[15] Alessio Figalli; Joaquim Serra On the fine structure of the free boundary for the classical obstacle problem, Invent. Math., Volume 215 (2019) no. 1, pp. 311-366
[16] Matteo Focardi; Emanuele Spadaro On the measure and structure of the free boundary of the lower dimensional obstacle problem, Arch. Ration. Mech. Anal., Volume 230 (2018) no. 1, pp. 125-184 correction in ibid. 230 (2018), no. 2, p. 783–784 | Zbl
[17] Jens Frehse On the regularity of the solution of a second order variational inequality, Boll. Unione Mat. Ital., Volume 6 (1972), pp. 312-315 | Zbl
[18] Nicola Garofalo; Arshak Petrosyan Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math., Volume 177 (2009) no. 2, pp. 415-461 | Zbl
[19] David Kinderlehrer; Louis Nirenberg Regularity in free boundary problems, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 4 (1977), pp. 373-391 | Zbl
[20] Régis Monneau On the number of singularities for the obstacle problem in two dimensions, J. Geom. Anal., Volume 13 (2003) no. 2, pp. 359-389 | Zbl
[21] Arshak Petrosyan; Henrik Shahgholian; Nina Uraltseva Regularity of Free Boundaries in Obstacle-Type Problems, Graduate Studies in Mathematics, 136, American Mathematical Society, 2012 | Zbl
[22] Makoto Sakai Regularity of a boundary having a Schwarz function, Acta Math., Volume 166 (1991) no. 3-4, pp. 263-297 | Zbl
[23] Makoto Sakai Regularity of free boundaries in two dimensions, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 20 (1993) no. 3, pp. 323-339 | Zbl
[24] David G. Schaeffer Some examples of singularities in a free boundary, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 4 (1976), pp. 131-144 | Zbl
[25] Georg Weiss A homogeneity improvement approach to the obstacle problem, Invent. Math., Volume 138 (1999) no. 1, pp. 23-50 | Zbl
Cited by Sources: