Mersenne banner

Books, Proceedings and Seminars of Centre Mersenne

  • Books
  • Seminars
  • Conferences
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Journées équations aux dérivées partielles
  • Year 2017
  • Talk no. 3
  • Next
Mixing solutions for IPM
Ángel Castro1
1 Instituto de Ciencias Matemáticas C/ Nicolás Cabrera, 13-15 Campus de Cantoblanco Universidad Autonóma de Madrid 28049 Madrid, Spain
Journées équations aux dérivées partielles (2017), Talk no. 3, 13 p.
  • Abstract

We explain the main steps in the proof of the existence of mixing solutions of the incompressible porous media equation for all Muskat type H 5 initial data in the fully unstable regime which appears in [4]. Also we present some numerical simulations about these solutions.

  • Article information
  • Export
  • How to cite
Published online: 2018-02-28
DOI: 10.5802/jedp.653
Author's affiliations:
Ángel Castro 1

1 Instituto de Ciencias Matemáticas C/ Nicolás Cabrera, 13-15 Campus de Cantoblanco Universidad Autonóma de Madrid 28049 Madrid, Spain
  • BibTeX
  • RIS
  • EndNote
@incollection{JEDP_2017____A3_0,
     author = {\'Angel Castro},
     title = {Mixing solutions for {IPM}},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:3},
     pages = {1--13},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2017},
     doi = {10.5802/jedp.653},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.653/}
}
TY  - JOUR
AU  - Ángel Castro
TI  - Mixing solutions for IPM
JO  - Journées équations aux dérivées partielles
N1  - talk:3
PY  - 2017
SP  - 1
EP  - 13
PB  - Groupement de recherche 2434 du CNRS
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.653/
DO  - 10.5802/jedp.653
LA  - en
ID  - JEDP_2017____A3_0
ER  - 
%0 Journal Article
%A Ángel Castro
%T Mixing solutions for IPM
%J Journées équations aux dérivées partielles
%Z talk:3
%D 2017
%P 1-13
%I Groupement de recherche 2434 du CNRS
%U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.653/
%R 10.5802/jedp.653
%G en
%F JEDP_2017____A3_0
Ángel Castro. Mixing solutions for IPM. Journées équations aux dérivées partielles (2017), Talk no. 3, 13 p. doi : 10.5802/jedp.653. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.653/
  • References
  • Cited by

[1] T. Beck, P. Sosoe and P. Wong, Duchon-Robert solutions for the Rayleigh-Taylor and Muskat problems. J. Differ. Equations 256, no. 1, 206-222, 2014.

[2] A. C. Bronzi, M. C. Lopes Filho and H. J. Nussenzveig Lopes, Wild solutions for 2D incompressible ideal flow with passive tracer. Commun. Math. Sci. 13, no. 5, 1333–1343 (2015).

[3] T. Buckmaster, C. De Lellis, P. Isett and L. Székelyhidi Jr., Anomalous dissipation for 1/5-Holder Euler flows. Ann. of Math. 182, 127–172 (2015).

[4] Á. Castro, D. Córodoba and D. Faraco, Mixing solutions for the Muskat problem. ArXiv:1605.04822

[5] Á. Castro, D. Córdoba, C. Fefferman, F. Gancedo and M. López-Fernández, Rayleigh-Taylor breakdown for the Muskat problem with application to water waves. Ann. of Math. 175 , 909–948 (2012).

[6] E. Chiodaroli, A counterexample to well-posedeness of entropy solutions to the compressible Euler system. J. Hyperbol. Differ. Eq. 11, 493-519 (2014).

[7] E. Chiodaroli, C. De Lellis and O. Kreml, Global ill-posedness of the isentropic system of gas dynamics. Comm. Pure Appl. Math. 68, 1157–1190 (2015).

[8] E. Chiodaroli, E. Feireisl and O. Kreml, On the weak solutions to the equations of a compressible heat conducting gas. Annales IHP-ANL 32, 225–243 (2015).

[9] E. Chiodaroli, O. Kreml, On the Energy Dissipation Rate of Solutions to the Compressible Isentropic Euler System. Arch. Ration. Mech. Anal. 214, 1019-1049 (2014).

[10] A. Choffrut, h-Principles for the Incompressible Euler Equations. Arch. Rational Mech. Anal. 210, no. 1, 133–163 (2013).

[11] P. Constantin, D. Córdoba, F. Gancedo, L. Rodriguez-Piazza and R. M. Strain, On the Muskat problem: global in time results in 2D and 3D. ArXiv:1310.0953, (2014).

[12] P. Constantin, D. Córdoba, F. Gancedo and R. M. Strain, On the global existence for the Muskat problem. J. Eur. Math. Soc. 15, 201-227, (2013).

[13] P. Constantin, F. Gancedo, V. Vicol and R. Shvydkoy, Global regularity for 2D Muskat equation with finite slop. ArXiv: 150701386, (2015).

[14] A. Córdoba, D. Córdoba and F. Gancedo, Interface evolution: the Hele-Shaw and Muskat problems. Ann. of Math. 173, no. 1, 477-542, (2011).

[15] D. Córdoba, D. Faraco, and F. Gancedo, Lack of uniqueness for weak solutions of the incompressible porous media equation. Arch. Ration. Mech. Anal. 200, no. 3, 725–746 (2011).

[16] D. Córdoba and F. Gancedo, Contour dynamics of incompressible 3-D fluids in a porous medium with different densities. Comm. Math. Phys. 273, no. 2, 445–471 (2007).

[17] C. H. A. Cheng, R. Granero-Belinchón and S. Shkoller, Well-possednes of the Muskat problem with H 2 -inital data. Adv. Math. 286, 32–104 (2016).

[18] S. Daneri, Cauchy Problem for Dissipative Holder Solutions to the Incompressible Euler Equations. Comm. Math. Phys. 329, no. 2, 745–786 (2014).

[19] H. Darcy, Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris, 1856.

[20] C. De Lellis and L. Székelyhidi Jr, The Euler equations as a differential inclusion. Ann. of Math. 170, 1417–1436 (2009).

[21] C. De Lellis and L. Székelyhidi Jr, On Admissibility Criteria for Weak Solutions of the Euler Equations. Arch. Rational Mech. Anal. 195, 225–260 (2010).

[22] C. De Lellis and L. Székelyhidi Jr, The h-principle and the equations of fluid dynamics. Bull. Amer. Math. Soc. (N.S.) 49, no. 3, 347–375 (2012).

[23] C. De Lellis and L. Székelyhidi Jr, Dissipative continuous Euler flows. Invent. Math. 193, no. 2, 377–407 (2013).

[24] C. De Lellis and L. Székelyhidi Jr, Dissipative Euler flows and Onsager’s conjecture. J. Eur. Math. Soc. 16, no. 7, 1467–1505 (2014).

[25] F. Clemens and L. Székelyhidi Jr, Piecewise constant subsolutions for the Muskat problem. ArXiv:1709.05155.

[26] F. Gancedo, A survey for the Muskat problem and a new estimate. SeMA J. 74, no. 1, 21–35, (2017).

[27] I. L. Hwang, The L 2 -Boundedness of Pseudodifferential Operators. Trans. Amer. Math. Soc., 302, 1, 55–76, (1987).

[28] P. Isett and V. Vicol, Holder continuous solutions of active scalar equations. Ann. of PDE 1, no. 1, 1-77 (2015).

[29] B. Kirchheim, Rigidity and Geometry of Microstructures. Habilitation thesis, University of Leipzig, 2003.

[30] B. Kirchheim, S. Müller and V. Šverák, Studying nonlinear PDE by geometry in matrix space. Geometric analysis and nonlinear partial differential equations, 347–395.

[31] S. Müller and V. Šverák, Convex integration for Lipschitz mappings and counterexamples to regularity. Ann. of Math. 157, 715–742 (2003).

[32] F. Otto, Evolution of microstructure in unstable porous media flow: a relaxational approach. Comm. Pure Appl. Math. 52, no. 7, 873–915 (1999).

[33] K. Seonghak and Y. Baisheng, Convex integration and infinitely many weak solutions to the Perona-Malik equation in all dimensions. SIAM J. Math. Anal. 47, no. 4, 2770–2794 (2015).

[34] R. Shvydkoy, Convex integration for a class of active scalar equations. J. Amer. Math. Soc. 24, 1159–1174 (2011).

[35] M. Siegel, R. Caflisch and S. Howison, Global existence, singular solutions and and ill-posedness for the Musakt Problem. Comm. Pure and Appl. Math. 57, 1374-1411, (2004).

[36] L. Székelyhidi Jr., Relaxation of the incompressible porous media equation. Ann. Sci. Éc. Norm. Supér. 45, no. 3, 491–509 (2012).

[37] L. Székelyhidi Jr., Weak solutions to the incompressible Euler equations with vortex sheet initial data. C. R. Math. Acad. Sci. Paris 349, no. 19-20, 1063–1066 (2011).

[38] L. Székelyhidi Jr and E. Wiedemann, Young measures generated by ideal incompressible fluid flows. Arch. Rational Mech. Anal. 206, no. 1, 333–366 (2012).

[39] L. Tartar, Incompressible fluid flow in a porous medium: convergence of the homogenization process. E. Sanchez-Palencia (Ed.), Non-homogeneous Media and Vibration Theory, Lecture Notes in Physics, 127, Springer-Verlag, Berlin (1980), pp. 368-377.

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us