Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Journées équations aux dérivées partielles
  • Année 2017
  • Exposé no. 4
  • Suivant
Control of eigenfunctions on hyperbolic surfaces: an application of fractal uncertainty principle
Semyon Dyatlov1
1 Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139, USA
Journées équations aux dérivées partielles (2017), Exposé no. 4, 14 p.
  • Résumé

This expository article, written for the proceedings of the Journées EDP (Roscoff, June 2017), presents recent work joint with Jean Bourgain [BD16] and Long Jin [DJ17]. We in particular show that eigenfunctions of the Laplacian on hyperbolic surfaces are bounded from below in L 2 norm on each nonempty open set, by a constant depending on the set but not on the eigenvalue.

  • Détail
  • Export
  • Comment citer
Publié le : 2018-02-28
Zbl
DOI : 10.5802/jedp.654
Affiliations des auteurs :
Semyon Dyatlov 1

1 Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139, USA
  • BibTeX
  • RIS
  • EndNote
@incollection{JEDP_2017____A4_0,
     author = {Semyon Dyatlov},
     title = {Control of eigenfunctions on hyperbolic surfaces: an application of fractal uncertainty principle},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     note = {talk:4},
     pages = {1--14},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2017},
     doi = {10.5802/jedp.654},
     zbl = {1372.81101},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.654/}
}
TY  - JOUR
AU  - Semyon Dyatlov
TI  - Control of eigenfunctions on hyperbolic surfaces: an application of fractal uncertainty principle
JO  - Journées équations aux dérivées partielles
N1  - talk:4
PY  - 2017
SP  - 1
EP  - 14
PB  - Groupement de recherche 2434 du CNRS
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.654/
DO  - 10.5802/jedp.654
LA  - en
ID  - JEDP_2017____A4_0
ER  - 
%0 Journal Article
%A Semyon Dyatlov
%T Control of eigenfunctions on hyperbolic surfaces: an application of fractal uncertainty principle
%J Journées équations aux dérivées partielles
%Z talk:4
%D 2017
%P 1-14
%I Groupement de recherche 2434 du CNRS
%U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.654/
%R 10.5802/jedp.654
%G en
%F JEDP_2017____A4_0
Semyon Dyatlov. Control of eigenfunctions on hyperbolic surfaces: an application of fractal uncertainty principle. Journées équations aux dérivées partielles (2017), Exposé no. 4, 14 p. doi : 10.5802/jedp.654. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.654/
  • Bibliographie
  • Cité par

[An08] Nalini Anantharaman, Entropy and the localization of eigenfunctions, Ann. of Math. 168(2008), 435–475. | MR

[AN07] Nalini Anantharaman and Stéphane Nonnenmacher, Half-delocalization of eigenfunctions of the Laplacian on an Anosov manifold, Ann. Inst. Fourier 57(2007), 2465–2523. | MR

[BD16] Jean Bourgain and Semyon Dyatlov, Spectral gaps without the pressure condition, Ann. of Math., to appear.

[BM62] Arne Beurling and Paul Malliavin, On Fourier transforms of measures with compact support, Acta Math. 107(1962), 291–309. | MR

[Bo16] David Borthwick, Spectral theory of infinite-area hyperbolic surfaces, second edition, Birkhäuser, 2016.

[CdV85] Yves Colin de Verdière, Ergodicité et fonctions propres du Laplacien, Comm. Math. Phys. 102(1985), 497–502. | Zbl

[DJ17] Semyon Dyatlov and Long Jin, Semiclassical measures on hyperbolic surfaces have full support, preprint, . | arXiv

[Dy17] Semyon Dyatlov, Notes on fractal uncertainty principle, lecture notes in progress, http://math.mit.edu/~dyatlov/files/2017/fupnotes.pdf.

[DZ16] Semyon Dyatlov and Joshua Zahl, Spectral gaps, additive energy, and a fractal uncertainty principle, Geom. Funct. Anal. 26(2016), 1011–1094. | MR

[Ji17] Long Jin, Control for Schrödinger equation on hyperbolic surfaces, preprint, . | arXiv

[JZ17] Long Jin and Ruixiang Zhang, Fractal uncertainty principle with explicit exponent, preprint, . | arXiv

[Li06] Elon Lindenstrauss, Invariant measures and arithmetic quantum unique ergodicity, Ann. of Math. 163(2006), 165–219. | MR

[Ma06] Jens Marklof, Arithmetic quantum chaos, Encyclopedia of Mathematical Physics, Oxford: Elsevier 1(2006), 212–220.

[RS94] Zeév Rudnick and Peter Sarnak, The behaviour of eigenstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161(1994), 195–213. | MR

[Sa11] Peter Sarnak, Recent progress on the quantum unique ergodicity conjecture, Bull. Amer. Math. Soc. 48(2011), 211–228. | MR

[Sh74] Alexander Shnirelman, Ergodic properties of eigenfunctions, Usp. Mat. Nauk. 29(1974), 181–182. | MR

[Ze87] Steve Zelditch, Uniform distribution of eigenfunctions on compact hyperbolic surfaces, Duke Math. J. 55(1987), 919–941. | MR

[Ze09] Steve Zelditch, Recent developments in mathematical quantum chaos, Curr. Dev. Math. 2009, 115–204.

[Zw12] Maciej Zworski, Semiclassical analysis, Graduate Studies in Mathematics 138, AMS, 2012. | MR | Numdam

Cité par Sources :

Diffusé par : Publié par : Développé par :
  • Nous suivre