In this expository note we review some recent results on Landau damping in the nonlinear Vlasov equations, focusing specifically on the recent construction of nonlinear echo solutions by the author [arXiv:1605.06841] and the associated background. These solutions show that a straightforward extension of Mouhot and Villani’s theorem on Landau damping to Sobolev spaces on is impossible and hence emphasize the subtle dependence on regularity of phase mixing problems. This expository note is specifically aimed at mathematicians who study the analysis of PDEs, but not necessarily those who work specifically on kinetic theory. However, for the sake of brevity, this review is certainly not comprehensive.
@incollection{JEDP_2017____A2_0, author = {Jacob Bedrossian}, title = {A brief summary of nonlinear echoes and {Landau} damping}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:2}, pages = {1--14}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2017}, doi = {10.5802/jedp.652}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.652/} }
TY - JOUR AU - Jacob Bedrossian TI - A brief summary of nonlinear echoes and Landau damping JO - Journées équations aux dérivées partielles N1 - talk:2 PY - 2017 SP - 1 EP - 14 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.652/ DO - 10.5802/jedp.652 LA - en ID - JEDP_2017____A2_0 ER -
%0 Journal Article %A Jacob Bedrossian %T A brief summary of nonlinear echoes and Landau damping %J Journées équations aux dérivées partielles %Z talk:2 %D 2017 %P 1-14 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.652/ %R 10.5802/jedp.652 %G en %F JEDP_2017____A2_0
Jacob Bedrossian. A brief summary of nonlinear echoes and Landau damping. Journées équations aux dérivées partielles (2017), Talk no. 2, 14 p. doi : 10.5802/jedp.652. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.652/
[1] Robert A. Adams; John J. F. Fournier Sobolev spaces, Pure and Applied Mathematics (Amsterdam), 140, Elsevier/Academic Press, Amsterdam, 2003, xiv+305 pages | MR
[2] J. Bedrossian Nonlinear echoes and Landau damping with insufficient regularity, arXiv:1605.06841 (2016)
[3] J. Bedrossian Suppression of plasma echoes and Landau damping in Sobolev spaces by weak collisions in a Vlasov-Fokker-Planck equation, To appear in Annals of PDE. arXiv:1704.00425 (2017)
[4] J. Bedrossian; P. Germain; N. Masmoudi Dynamics near the subcritical transition of the 3D Couette flow I: Below threshold, To appear in Mem. Amer. Math. Soc., arXiv:1506.03720 (2015)
[5] J. Bedrossian; P. Germain; N. Masmoudi Dynamics near the subcritical transition of the 3D Couette flow II: Above threshold, arXiv:1506.03721 (2015)
[6] J. Bedrossian; P. Germain; N. Masmoudi On the stability threshold for the 3D Couette flow in Sobolev regularity, Ann. of Math., Volume 157 (2017) no. 1
[7] J. Bedrossian; P. Germain; N. Masmoudi Stability of the Couette flow at high Reynolds number in 2D and 3D, arXiv:1712.02855 (2017)
[8] J. Bedrossian; N. Masmoudi; C. Mouhot Landau damping in finite regularity for unconfined systems with screened interactions, To appear in Comm. Pure Appl. Math. (2016)
[9] J. Bedrossian; N. Masmoudi; V. Vicol Enhanced dissipation and inviscid damping in the inviscid limit of the Navier-Stokes equations near the 2D Couette flow, Arch. Rat. Mech. Anal., Volume 216 (2016) no. 3, pp. 1087-1159
[10] J. Bedrossian; V. Vicol; F. Wang The Sobolev stability threshold for 2D shear flows near Couette, To appear in J. Nonlin. Sci.. Preprint: arXiv:1604.01831 (2016)
[11] Jacob Bedrossian; Michele Coti Zelati; Vlad Vicol Vortex axisymmetrization, inviscid damping, and vorticity depletion in the linearized 2D Euler equations, arXiv preprint arXiv:1711.03668 (2017)
[12] Jacob Bedrossian; Nader Masmoudi Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations, Publ. math. de l’IHÉS (2013), pp. 1-106
[13] Jacob Bedrossian; Nader Masmoudi; Clement Mouhot Landau damping: paraproducts and Gevrey regularity, Annals of PDE, Volume 2 (2016) no. 1, pp. 1-71
[14] J.M. Bony Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non lináires, Ann.Sc.E.N.S., Volume 14 (1981), pp. 209-246
[15] T. J. M. Boyd; J. J. Sanderson The physics of plasmas, Cambridge University Press, Cambridge, 2003, xii+532 pages | DOI | MR
[16] E. Caglioti; C. Maffei Time asymptotics for solutions of Vlasov-Poisson equation in a circle, J. Stat. Phys., Volume 92 (1998) no. 1/2
[17] James Colliander; Markus Keel; Gigiola Staffilani; Hideo Takaoka; Terence Tao Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Inventiones mathematicae, Volume 181 (2010) no. 1, pp. 39-113
[18] P. Degond Spectral theory of the linearized Vlasov-Poisson equation, Trans. Amer. Math. Soc., Volume 294 (1986) no. 2, pp. 435-453
[19] Erwan Faou; Frédéric Rousset Landau damping in Sobolev spaces for the Vlasov-HMF model, Arch. Ration. Mech. Anal., Volume 219 (2016) no. 2, pp. 887-902 | DOI | MR
[20] Bastien Fernandez; David Gérard-Varet; Giambattista Giacomin Landau damping in the Kuramoto model (Preprint arXiv:1410.6006, to appear in Ann. Institut Poincaré - Analysis nonlinéaire)
[21] Robert Glassey; Jack Schaeffer Time decay for solutions to the linearized Vlasov equation, Transport Theory Statist. Phys., Volume 23 (1994) no. 4, pp. 411-453 | DOI | MR
[22] Robert Glassey; Jack Schaeffer On time decay rates in Landau damping, Comm. Part. Diff. Eqns., Volume 20 (1995) no. 3-4, pp. 647-676 | DOI | MR
[23] François Golse; Pierre-Louis Lions; Benoît Perthame; Rémi Sentis Regularity of the moments of the solution of a transport equation, Journal of functional analysis, Volume 76 (1988) no. 1, pp. 110-125
[24] François Golse; Benoıt Perthame; Rémi Sentis Un résultat de compacité pour les équations de transport et application au calcul de la limite de la valeur propre principale d’un opérateur de transport, CR Acad. Sci. Paris Sér. I Math, Volume 301 (1985) no. 7, pp. 341-344
[25] Marcel Guardia; Vadim Kaloshin Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, Journal of the European Mathematical Society, Volume 17 (2015) no. 1, pp. 71-149
[26] D. Han-Kwan Quasineutral limit of the Vlasov-Poisson system with massless electrons, Comm. Part. Diff. Eqns., Volume 36 (2011) no. 8, pp. 1385-1425
[27] D. Han-Kwan; M. Iacobelli The quasineutral limit of the Vlasov-Poisson equation in Wasserstein metric, arXiv preprint arXiv:1412.4023 (2014)
[28] D. Han-Kwan; F. Rousset Quasineutral limit for Vlasov-Poisson with Penrose stable data, arXiv preprint arXiv:1508.07600 (2015)
[29] Zaher Hani; Benoit Pausader; Nikolay Tzvetkov; Nicola Visciglia Modified scattering for the cubic Schrödinger equation on product spaces and applications, Forum of Mathematics, Pi, Volume 3 (2015)
[30] L. Hörmander The Nash-Moser theorem and paradifferential operators, Analysis, et cetera (1990), pp. 429-449
[31] H. J. Hwang; J. J. L. Velaźquez On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem, Indiana Univ. Math. J (2009), pp. 2623-2660
[32] Pierre-Emmanuel Jabin; Luis Vega A real space method for averaging lemmas, Journal de mathématiques pures et appliquées, Volume 83 (2004) no. 11, pp. 1309-1351
[33] Herbert Koch; Daniel Tataru; Monica Visan Dispersive equations and nonlinear waves, Oberwolfach Seminars, Volume 45 (2014)
[34] N. Krall; A. Trivelpiece Principles of plasma physics, San Francisco Press, 1986
[35] Lev Landau On the vibration of the electronic plasma, J. Phys. USSR, Volume 10 (1946) no. 25
[36] D. Levermore; M. Oliver Analyticity of solutions for a generalized Euler equation, J. Diff. Eqns., Volume 133 (1997), pp. 321-339
[37] Zhiwu Lin; Chongchun Zeng Small BGK waves and nonlinear Landau damping, Comm. Math. Phys., Volume 306 (2011) no. 2, pp. 291-331 | DOI | MR
[38] J. Malmberg; C. Wharton; C. Gould; T. O’Neil Plasma wave echo, Phys. Rev. Lett., Volume 20 (1968) no. 3, pp. 95-97
[39] Clément Mouhot; Cédric Villani On Landau damping, Acta Math., Volume 207 (2011), pp. 29-201
[40] Thomas M O’Neil Effect of Coulomb collisions and microturbulence on the plasma wave echo, The Physics of Fluids, Volume 11 (1968) no. 11, pp. 2420-2425
[41] W. Orr The stability or instability of steady motions of a perfect liquid and of a viscous liquid, Part I: a perfect liquid, Proc. Royal Irish Acad. Sec. A: Math. Phys. Sci., Volume 27 (1907), pp. 9-68
[42] Raymond E. A. C. Paley; Norbert Wiener Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, 19, American Mathematical Society, Providence, RI, 1987, x+184 pages (Reprint of the 1934 original) | MR
[43] O. Penrose Electrostatic instability of a uniform non-Maxwellian plasma, Phys. Fluids, Volume 3 (1960), pp. 258-265
[44] AA Schekochihin; JT Parker; EG Highcock; PJ Dellar; W Dorland; GW Hammett Phase mixing versus nonlinear advection in drift-kinetic plasma turbulence, Journal of Plasma Physics, Volume 82 (2016) no. 2
[45] T. Stix Waves in plasmas, Springer, 1992
[46] CH Su; C Oberman Collisional damping of a plasma echo, Physical Review Letters, Volume 20 (1968) no. 9, 427 pages
[47] T. Tao Nonlinear dispersive equations, CBMS Regional Conference Series in Mathematics, Volume 106 (2006) | MR
[48] Lloyd Nicholas Trefethen; Mark Embree Spectra and pseudospectra: the behavior of nonnormal matrices and operators, Princeton University Press, 2005
[49] I. Tristani Landau damping for the linearized Vlasov Poisson equation in a weakly collisional regime, arXiv:1603.07219 (2016)
[50] N.G. van Kampen On the theory of stationary waves in plasmas, Physica, Volume 21 (1955), pp. 949-963
[51] A. A. Vlasov The vibrational properties of an electron gas, Zh. Eksp. Teor. Fiz., Volume 291 (1938) no. 8 (In russian, translation in english in Soviet Physics Uspekhi, vol. 93 Nos. 3 and 4, 1968)
[52] D. Wei; Z. Zhang; W. Zhao Linear inviscid damping for a class of monotone shear flow in Sobolev spaces, Communications on Pure and Applied Mathematics (2015)
[53] Dongyi Wei; Zhifei Zhang; Weiren Zhao Linear inviscid damping and vorticity depletion for shear flows, arXiv preprint arXiv:1704.00428 (2017)
[54] J.H. Yu; C.F. Driscoll Diocotron wave echoes in a pure electron plasma, IEEE Trans. Plasma Sci., Volume 30 (2002) no. 1
[55] J.H. Yu; C.F. Driscoll; T.M. O‘Neil Phase mixing and echoes in a pure electron plasma, Phys. of Plasmas, Volume 12 (2005) no. 055701
[56] Christian Zillinger Linear inviscid damping for monotone shear flows in a finite periodic channel, boundary effects, blow-up and critical Sobolev regularity, Archive for Rational Mechanics and Analysis, Volume 221 (2016) no. 3, pp. 1449-1509
Cited by Sources: