We provide a rigorous derivation of the linear Boltzmann equation without cut-off starting from a system of particles interacting via a potential with infinite range as the number of particles N goes to infinity under the Boltzmann-Grad scaling. The main difficulty in our context is that, due to the infinite range of the potential, a non-integrable singularity appears in the angular collision kernel, making no longer valid the single-use of Lanford’s strategy. Our proof relies then on a combination of Lanford’s strategy, of tools developed recently by Bodineau, Gallagher and Saint-Raymond to study the collision process, and of new duality arguments to study the additional terms associated to the long-range interaction, leading to some explicit weak estimates.
@incollection{JEDP_2017____A1_0, author = {Nathalie Ayi}, title = {Derivation of the linear {Boltzmann} equation without cut-off starting from particles}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:1}, pages = {1--12}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2017}, doi = {10.5802/jedp.651}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.651/} }
TY - JOUR AU - Nathalie Ayi TI - Derivation of the linear Boltzmann equation without cut-off starting from particles JO - Journées équations aux dérivées partielles N1 - talk:1 PY - 2017 SP - 1 EP - 12 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.651/ DO - 10.5802/jedp.651 LA - en ID - JEDP_2017____A1_0 ER -
%0 Journal Article %A Nathalie Ayi %T Derivation of the linear Boltzmann equation without cut-off starting from particles %J Journées équations aux dérivées partielles %Z talk:1 %D 2017 %P 1-12 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.651/ %R 10.5802/jedp.651 %G en %F JEDP_2017____A1_0
Nathalie Ayi. Derivation of the linear Boltzmann equation without cut-off starting from particles. Journées équations aux dérivées partielles (2017), Talk no. 1, 12 p. doi : 10.5802/jedp.651. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.651/
[1] R. Alexandre Remarks on 3D Boltzmann linear equation without cutoff, Transport Theory and Statistical Physics, Volume 28 (1999) no. 5, pp. 433-473 | DOI
[2] R. Alexandre; Y. Morimoto; S. Ukai; C.-J. Xu; T. Yang Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff, Communications in Mathematical Physics, Volume 304 (2011) no. 2, pp. 513-581
[3] R. Alexandre; Y. Morimoto; S. Ukai; C.-J. Xu; T. Yang The Boltzmann equation without angular cutoff in the whole space: II, Global existence for hard potential, Analysis and Applications, Volume 09 (2011) no. 02, pp. 113-134 http://www.worldscientific.com/doi/abs/10.1142/S0219530511001777 | DOI
[4] R. Alexandre; Y. Morimoto; S. Ukai; C.-J. Xu; T. Yang The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential, Journal of Functional Analysis, Volume 262 (2012) no. 3, pp. 915 -1010 http://www.sciencedirect.com/science/article/pii/S0022123611003752 | DOI
[5] R. Alexandre; C. Villani On The Boltzmann Equation For Long-Range Interactions, Comm. Pure Appl. Math, Volume 55 (2002), pp. 30-70
[6] N. Ayi From Newton’s law to the Boltzmann equation without cut-off, Comm. Math. Phys., Volume 350 (2017) no. 3, pp. 1219-1274
[7] T. Bodineau; I. Gallagher; L. Saint-Raymond The Brownian motion as the limit of a deterministic system of hard-spheres, Inventiones mathematicae, Volume 203 (2015) no. 2, pp. 493-553 | DOI
[8] I. Gallagher; L. Saint-Raymond; B. Texier From Newton to Boltzmann: Hard Spheres and Short-range Potentials, Zurich Lectures in Advanced Mathematics, European Mathematical Society, 2013 https://books.google.fr/books?id=K6VCngEACAAJ
[9] H. Grad Principles of the Kinetic Theory of Gases, Handbuch der Physik, Volume 12 (1958), pp. 205-294 | DOI
[10] P. T. Gressman; R. M. Strain; R. V. Kadison Global classical solutions of the Boltzmann equation with long-range interactions, Proceedings of the National Academy of Sciences of the United States of America, Volume 107 (2010) no. 13, pp. 5744-5749 http://www.jstor.org/stable/25665060
[11] F. King BBGKY hierarchy for positive potentials, Dept. Mathematics, Univ. California, Berkeley (1975) (Ph. D. Thesis)
[12] O. E. Lanford Time evolution of large classical systems, Dynamical Systems, Theory and Applications (J. Moser, ed.) (Lecture Notes in Physics), Volume 38, Springer Berlin Heidelberg, 1975, pp. 1-111 | DOI
[13] J. L. Lebowitz; H. Spohn Steady state self-diffusion at low density, Journal of Statistical Physics, Volume 29 (1982) no. 1, pp. 39-55 | DOI
[14] M. Pulvirenti; C. Saffirio; S. Simonella On the validity of the Boltzmann equation for short range potentials, Reviews in Mathematical Physics, Volume 26 (2014) no. 02, 1450001 pages http://www.worldscientific.com/doi/abs/10.1142/S0129055X14500019 | DOI
[15] H. van Beijeren; O. E. Lanford; J. L. Lebowitz; H. Spohn Equilibrium time correlation functions in the low-density limit, Journal of Statistical Physics, Volume 22 (1980) no. 2, pp. 237-257 | DOI
Cited by Sources: