Out-of-equilibrium dynamics and statistics of dispersive PDE

Journées équations aux dérivées partielles (2016), Talk no. 5, 12 p.

Published online:

DOI:
10.5802/jedp.646

Keywords:
Modified scattering, nonlinear Schrödinger equation, wave guide manifolds, energy cascade, weak turbulence

Author's affiliations:

Zaher Hani ^{1}
^{1} School of Mathematics Georgia Institute of Technology Atlanta, GA USA

@incollection{JEDP_2016____A5_0, author = {Zaher Hani}, title = {Out-of-equilibrium dynamics and statistics of dispersive {PDE}}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, note = {talk:5}, pages = {1--12}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2016}, doi = {10.5802/jedp.646}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.646/} }

TY - JOUR AU - Zaher Hani TI - Out-of-equilibrium dynamics and statistics of dispersive PDE JO - Journées équations aux dérivées partielles N1 - talk:5 PY - 2016 SP - 1 EP - 12 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.646/ DO - 10.5802/jedp.646 LA - en ID - JEDP_2016____A5_0 ER -

%0 Journal Article %A Zaher Hani %T Out-of-equilibrium dynamics and statistics of dispersive PDE %J Journées équations aux dérivées partielles %Z talk:5 %D 2016 %P 1-12 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.646/ %R 10.5802/jedp.646 %G en %F JEDP_2016____A5_0

Zaher Hani. Out-of-equilibrium dynamics and statistics of dispersive PDE. Journées équations aux dérivées partielles (2016), Talk no. 5, 12 p. doi : 10.5802/jedp.646. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.646/

[1] J. Bourgain, Aspects of long time behaviour of solutions of nonlinear Hamiltonian evolution equations, Geom. Funct. Anal. 5 (1995), no. 2, 105–140.

[2] J. Bourgain, On the growth in time of higher Sobolev norms of smooth solutions of Hamiltonian PDE, Internat. Math. Res. Notices 1996, no. 6, 277–304.

[3] J. Bourgain, On growth in time of Sobolev norms of smooth solutions of nonlinear Schrödinger equations in ${\mathbb{R}}^{D}$. J. Anal. Math. 72 (1997), 299–310.

[4] J. Bourgain, Problems in Hamiltonian PDE’s, Geom. Funct. Anal. 2000, Special Volume, Part I, 32–56.

[5] T. Buckmaster, P. Germain, Z. Hani, and J. Shatah, Effective dynamics of nonlinear Schrödinger equations on large domains. Preprint.

[6] T. Buckmaster, P. Germain, Z. Hani, and J. Shatah, Analysis of the (CR) equation in higher dimensions. Preprint.

[7] R. Carles, E. Faou, Energy cascades for NLS on ${\mathbb{T}}^{d}$, Discrete Contin. Dyn. Syst. 32 (2012) 2063–2077.

[8] J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation, Invent. Math. **181** (2010), 39–113.

[9] Weinan E., K. Khanin, A. Mazel, Y. Sinai, Invariant measures for Burgers equation with stochastic forcing, Ann. Math., 151 (3), 877–960 (2000).

[10] J.-P. Eckmann, C.-A. Pillet, L. Rey-Bellet, L., Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Comm. Math. Phys. 201 (1999), no. 3, 657–697.

[11] E. Faou, P. Germain, and Z. Hani, The weakly nonlinear large box limit of the 2D cubic nonlinear Schrödinger equation, Journal of the AMS (JAMS). Published electronically: October 20, 2015 (68 pages).

[12] J. Ford, The Fermi-Pasta-Ulam Problem: Paradox turned discovery. Physics Reports (Review Section of Physics Letters) 213, No. 5(1992) 271–310. North-Holland.

[13] I. Gallagher, L. Saint-Raymond, B. Texier, From Newton to Boltzmann: hard spheres and short-range potentials. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2013.

[14] G. Galavotti, The Fermi-Pasta-Ulam Problem: a status report, Lecture Notes in Physics 728, Springer 2008.

[15] P. Gerard, S. Grellier, The cubic Szegö equation and Hankel operators. Preprint arXiv:1508.06814.

[16] P. Germain, Z. Hani, and L. Thomann, On the continuous resonant equation for NLS. Part I. Deterministic analysis. J. Math. Pures Appl. (9) 105 (2016), no. 1, 131–163.

[17] P. Germain, Z. Hani, and L. Thomann, On the continuous resonant equation for NLS. Part II. Probabilistic analysis. Analysis & PDE 8-7 (2015), 1733–1756.

[18] M. Guardia and V. Kaloshin, Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation, Journal of the Eur. Math. Society, 17 (1): 71–149 (2015).

[19] M. Guardia, E. Haus and M. Procesi, Growth of Sobolev norms for the analytic NLS on ${\mathbb{T}}^{2}$, Advances in Mathematics, published online, 2016.

[20] M. Hairer, How hot can a heat bath get?, Comm. Math. Phys. 292 (2009), no. 1, 131–177.

[21] M. Hairer, J. Mattingly, Slow energy dissipation in anharmonic oscillator chains. Comm. Pure Appl. Math. 62 (2009), no. 8, 999–1032.

[22] M. Hairer, J. Mattingly, Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164 (2006), no. 3, 993–1032.

[23] Z. Hani, Global and dynamical aspects of the nonlinear Schrödinger equations on compact manifolds, UCLA Ph.D Thesis, 2011.

[24] Z. Hani, Long-time strong instability and unbounded orbits for some nonlinear Schrödinger equations on ${\mathbb{T}}^{2}$, Archive for Rational Mechanics and Analysis, 2014, Volume 211, Issue 3, pp 929–964.

[25] Z. Hani and B. Pausader, On scattering for the quintic defocusing nonlinear Schrödinger equation on $\mathbb{R}\times {\mathbb{T}}^{2}$, Communications on Pure and Applied Mathematics, volume 67, Issue 9, pages 1466–1542, 2014.

[26] Z. Hani, B. Pausader, N. Tzvetkov, N. Visciglia, Modified scattering for the cubic Schrödinger equation on product spaces and applications, Forum of Math. Pi, Volume 3 / 2015, e4 (63 pages).

[27] Z. Hani, B. Pausader, N. Tzvetkov, N. Visciglia, Growing Sobolev norms for the cubic defocusing Schroedinger equation. Seminaire Laurent Schwartz - EDP et applications (2013-2014), Exp. No. 16, 11 p.

[28] Z. Hani and L. Thomann, Asymptotic behavior of the nonlinear Schrödinger equation with harmonic trapping. To appear in Comm. Pure and Applied Math (CPAM).

[29] E. Haus and M. Procesi, Growth of Sobolev norms for the quintic NLS on ${\mathbb{T}}^{2}$, Analysis and Partial Differential Equations, 8 (4), 883–922, 2015.

[30] D.R. Heath-Brown, A new form of the circle method, and its application to quadratic forms, J. Reine Angew. Math. 481, (1996) 149–206.

[31] D.R. Heath-Brown, Analytic Methods For The Distribution of Rational Points On Algebraic Varieties in Equidistribution in Number Theory, An Introduction. NATO Science Series, 2007.

[32] S. B. Kuksin, Oscillations in space-periodic nonlinear Schrödinger equations, Geom. Funct. Anal. 7 (1997), no. 2, 338–363.

[33] O. Lanford, On the derivation of the Boltzmann equation. Astérisque 40, 117–137 (1976).

[34] A. Majda, Introduction to PDEs and waves for the atmosphere and ocean. Courant Lecture Notes in Mathematics, 9. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.

[35] A. Majda, D. McLaughlin, E. Tabak, A one-dimensional model for dispersive wave turbulence., J. Nonlinear Sci. 7 (1997), no. 1, 9–44.

[36] S. Nazarenko, Wave Turbulence, Lecture Notes in Physics 825 Springer.

[37] R. Peierls, The kinetic theory of thermal conduction in crystals, Annalen der Physik 3 (8): 1055–1101 (1929).

[38] L. Rey-Bellet, Open classical systems. Open quantum systems. II, 41–78, Lecture Notes in Math., 1881, Springer, Berlin, 2006.

[39] Y. Sinai, Hyperbolic billiards. Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 249–260, Math. Soc. Japan, Tokyo, 1991.

[40] V. Sohinger, Bounds on the growth of high Sobolev norms of solutions to nonlinear Schrödinger Equations on ${S}^{1}$, Differential Integral Equations 24 (2011), no. 7-8, 653–718.

[41] G. Staffilani, On the growth of high Sobolev norms of solutions for KdV and Schrödinger equations, Duke Math. J. 86 (1997), no. 1, 109–142.

[42] C. Sulem and P.L. Sulem, The nonlinear Schrödinger equation. Self-focusing and wave collapse. Applied Mathematical Sciences, 139. Springer-Verlag, New York, 1999.

[43] T. Tao, Nonlinear Dispersive Equations, Local and Global Analysis, CBMS Regional Conference Series in Mathematics, 106, American Mathematical Society, Providence, RI, 2006.

[44] N. Tzvetkov and N. Visciglia, Small data scattering for the nonlinear Schrödinger equation on product spaces, Comm. Partial Differential Equations, vol. 37, 2012, n.1, pp. 125–135.

*Cited by Sources: *