On présente quelques problèmes et résultats de type limites hydrodynamiques pour des modèles couplés fluide/cinétique décrivant l'interaction de particules avec un fluide en mouvement.
@incollection{JEDP_2002____A7_0, author = {Thierry Goudon and Pierre-Emmanuel Jabin and Alexis Vasseur}, title = {Limites hydrodynamiques pour les \'equations de {Vlasov-Stokes}}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {7}, pages = {1--16}, publisher = {Universit\'e de Nantes}, year = {2002}, doi = {10.5802/jedp.605}, mrnumber = {1968203}, language = {fr}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.605/} }
TY - JOUR AU - Thierry Goudon AU - Pierre-Emmanuel Jabin AU - Alexis Vasseur TI - Limites hydrodynamiques pour les équations de Vlasov-Stokes JO - Journées équations aux dérivées partielles PY - 2002 SP - 1 EP - 16 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.605/ DO - 10.5802/jedp.605 LA - fr ID - JEDP_2002____A7_0 ER -
%0 Journal Article %A Thierry Goudon %A Pierre-Emmanuel Jabin %A Alexis Vasseur %T Limites hydrodynamiques pour les équations de Vlasov-Stokes %J Journées équations aux dérivées partielles %D 2002 %P 1-16 %I Université de Nantes %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.605/ %R 10.5802/jedp.605 %G fr %F JEDP_2002____A7_0
Thierry Goudon; Pierre-Emmanuel Jabin; Alexis Vasseur. Limites hydrodynamiques pour les équations de Vlasov-Stokes. Journées équations aux dérivées partielles (2002), article no. 7, 16 p. doi : 10.5802/jedp.605. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.605/
[1] Berthonnaud P. Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés, C. R. Acad. Sci., 331 (2000) 651-654. | MR | Zbl
[2] Brenier, Y., Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000) 737-754. | MR | Zbl
[3] Caflisch R., Papanicolaou G., Dynamic theory of suspensions with Brownian effects, SIAM J. Appl. Math., 43 (1983) 885-906. | MR | Zbl
[4] Clouet J.F., Domelevo K., Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow, Math. Models Methods Appl. Sci., 7 (1997) 239-263. | MR | Zbl
[5] Desvillettes L., About the modelling of complex flows by gas-particle methods, Preprint CMLA, 2001.
[6] Diperna R., Lions P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989) 511-547. VII-14 | MR | Zbl
[7] Domelevo K., Roquejoffre J. M., Existence and stability of traveling wave solutions in a kinetic model of two-phase flows, Comm. PDE, 24 (1999) 61-108. | MR | Zbl
[8] Domelevo K., Vignal M.-H., Limites visqueuses pour des systèmes de type Fokker-Planck-Burgers unidimensionnels, C. R. Acad. Sci., 332 (2001) 863-868. | MR | Zbl
[9] Dumas, Golse F., Homogenization of transport equations, SIAM J. Appl. Math., 60 (2000) 1447-1470. | MR | Zbl
[10] Gilbard, Trudinger N., Elliptic PDE of second order, (Springer, 1983). | Zbl
[11] Golse F., Levermore C. D., Saint-Raymond L., La méthode de l'entropie relative pour les limites hydrodynamiques de modèles cinétiques Séminaire Equations aux Dérivées Partielles, 1999-2000, Exp. No. XIX, Ecole Polytechnique, Palaiseau, 2000. | Numdam | MR | Zbl
[12] Goudon T., Asymptotic problems for a kinetic model of two-phase flow, Proc. Royal Soc. Edimburgh, 131, (2001) 1371-1384. | MR | Zbl
[13] Hamdache K., Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Industrial and Appl. Math., 15 (1998) 51-74. | MR
[14] Hamdache K., Umpublished work, Personal Communication.
[15] Herrero H., Lucquin-Desreux B., Perthame B., On the motion of dispersed balls in a potential flow : a kinetic description of the added mass effect, SIAM J. Appl. Math., 60 (1999) 61-83. | MR | Zbl
[16] Jabin P.E., Large time concentrations for solutions to kinetic equations with energy dissipation, Comm. PDE., 25 (2000) 541-557. | MR | Zbl
[17] Jabin P.E., Macroscopic limit of Vlasov type equations with friction, Ann. IHP Anal. Non Linéaire, 17 (2000) 651-672. | Numdam | MR | Zbl
[18] Jabin P.E., Perthame B., Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid in Modeling in applied sciences, a kinetic theory approach, N. Bellomo, M. Pulvirenti Eds. (Birkhäuser, 2000), pp. 111-147. | MR | Zbl
[19] Lions P.L., Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, III, J. Math. Kyoto Univ. 34 (1994) 391-461, 1994 and 34 (1994) 539-584. | MR | Zbl
[20] Nieto J., Poupaud F., Soler J., High field limit for the VPFP system, Arch. Rat. Mech. Anal., 158 (2001) 29-59. | MR | Zbl
[21] Poupaud F., Soler J., Parabolic limit and stability of the Vlasov-PoissonFokker-Planck system, Math. Models Methods Appl. Sci., 10 (2000) 1027-1045. | MR | Zbl
[22] Russo G., Smereka P., Kinetic theory for bubbly flows I, II, SIAM J. Appl. Math., 56 (1996) 327-371. | MR | Zbl
[23] Simon J., Compact sets in L p (0,T ; B), Ann. Mat. Pura. Appl. IV, 146 (1987) 65-96. | MR | Zbl
[24] Williams F. A., Combustion theory (Benjamin Cummings Publ., 2nd ed., 1985
Cited by Sources: