We consider the Fokker-Planck equation with a confining or anti-confining potential which behaves at infinity like a possibly high degree homogeneous function. Hypoellipticity techniques provide the well-posedness of the weak-Cauchy problem in both cases as well as instantaneous smoothing and exponential trend to equilibrium. Lower and upper bounds for the rate of convergence to equilibrium are obtained in terms of the lowest positive eigenvalue of the corresponding Witten laplacian, with detailed applications
@incollection{JEDP_2002____A8_0, author = {Fr\'ed\'eric H\'erau}, title = {Isotropic hypoellipticity and trend to the equilibrium for the {Fokker-Planck} equation with high degree potential}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {8}, pages = {1--13}, publisher = {Universit\'e de Nantes}, year = {2002}, doi = {10.5802/jedp.606}, mrnumber = {1968204}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.606/} }
TY - JOUR AU - Frédéric Hérau TI - Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential JO - Journées équations aux dérivées partielles PY - 2002 SP - 1 EP - 13 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.606/ DO - 10.5802/jedp.606 LA - en ID - JEDP_2002____A8_0 ER -
%0 Journal Article %A Frédéric Hérau %T Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential %J Journées équations aux dérivées partielles %D 2002 %P 1-13 %I Université de Nantes %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.606/ %R 10.5802/jedp.606 %G en %F JEDP_2002____A8_0
Frédéric Hérau. Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential. Journées équations aux dérivées partielles (2002), article no. 8, 13 p. doi : 10.5802/jedp.606. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.606/
[1] F. Bouchut and F. Dolbeault. On long time asymptotics of the Vlasov-FokkerPlanck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials. Differential and Integral Equations, 8(3):487- 514, 1995. | MR | Zbl
[2] L. Desvillettes and C. Villani. On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker-Planck equation. Comm. Pure Appl. Math., 54(1):1-42, 2001. | MR | Zbl
[3] N. Dunford and J.T. Schwartz. Linear operators. Part I. John Wiley & Sons Inc., New York, 1988. | Zbl
[4] J.P. Eckmann and M. Hairer. Non-equilibrium statistical mechanics of strongly anharmonic chains of oscillators. Comm. Math. Phys., 212(1):105-164, 2000. | MR | Zbl
[5] J.P. Eckmann, C.A. Pillet, and L. Rey-Bellet. Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Comm. Math. Phys., 201(3):657-697, 1999. | MR | Zbl
[6] B. Helffer. Semi-classical analysis for the Schrödinger operator and applications, volume 1336 of Lect. Notes in Mathematics. Springer-Verlag, Berlin, 1988. | MR | Zbl
[7] B. Helffer and A. Mohamed. Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique. Ann. Inst. Fourier (Grenoble), 38(2):95-112, 1988. | Numdam | MR | Zbl
[8] B. Helffer and A. Mohamed. Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells. J. Funct. Anal., 138(1):40-81, 1996. | MR | Zbl
[9] B. Helffer and J. Nourrigat. Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs. Birkhäuser Boston Inc., Boston, MA, 1985. | MR | Zbl
[10] B. Helffer and J. Sjöstrand. Puits multiples en mécanique semi-classique. IV.étude du complexe de Witten. Comm. Partial Differential Equations, 10(3):245-340, 1985. | MR | Zbl
[11] B. Helffer and F. Nier. work in preparation.
[12] F. Hérau and F. Nier. Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential. preprint University of Rennes 1, 2002. VIII-11
[13] L. Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147-171, 1967. | MR | Zbl
[14] L. Hörmander. Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z., 219(3):413-449, 1995. | MR | Zbl
[15] J. Johnsen. On the spectral properties of Witten-Laplacians, their range projections and Brascamp-Lieb's inequality. Integral Equations Operator Theory, 36(3):288-324, 2000. | MR | Zbl
[16] J.J. Kohn. Lectures on degenerate elliptic problems. In Pseudodifferential operator with applications (CIME 1977), pages 89-151. Liguori, Naples, 1978. | MR | Zbl
[17] G. Métivier. Équations aux dérivées partielles sur les groupes de Lie nilpotents. In Bourbaki Seminar, Vol. 1981/1982, pages 75-99. Soc. Math. France, Paris, 1982. | Numdam | MR | Zbl
[18] J. Nourrigat. Systèmes sous-elliptiques. In Séminaire sur les équations aux dérivées partielles 1986-1987, pages Exp. No. V, 14. École Polytech., Palaiseau, 1987. | Numdam | MR | Zbl
[19] J. Nourrigat. Systèmes sous-elliptiques. II. Invent. Math., 104(2), 1991. | MR | Zbl
[20] M. Reed and B. Simon. Methods of Modern Mathematical Physics, volume 2. Acad. Press, 1975. | MR | Zbl
[21] L. Rey-Bellet and L.E. Thomas. Asymptotic Behavior of Thermal Nonequilibrium Steady States for a Driven Chain of Anharmonic Oscillators. Comm. Math. Phys., 215:1-24, 2000. | MR | Zbl
[22] L. Rey-Bellet and L.E. Thomas. Exponential Convergence to Non-Equilibrium Stationary States in Classical Statistical Mechanics. Comm. Math. Phys., 225:305-329, 2000. | MR | Zbl
[23] L. Rey-Bellet and L.E. Thomas. Fluctuations of the Entropy Production in Anharmonic Chains. preprint 2002. | MR
[24] H. Risken. The Fokker-Planck equation. Springer-Verlag, Berlin, second edition, 1989. Methods of solution and applications. | MR | Zbl
[25] L.P. Rothschild and E.M. Stein. Hypoelliptic differential operators and nilpotent groups. Acta Math., 137(3-4):247-320, 1976. | MR | Zbl
[26] D. Talay. Approximation of invariant measures of nonlinear Hamiltonian and dissipative stochastic differential equations. In C. Soize R. Bouc, editor, Progress in Stochastic Structural Dynamics, volume 152 of Publication du L.M.A.-C.N.R.S., pages 139-169, 1999
Cited by Sources: