On présente quelques problèmes et résultats de type limites hydrodynamiques pour des modèles couplés fluide/cinétique décrivant l'interaction de particules avec un fluide en mouvement.
@incollection{JEDP_2002____A7_0,
author = {Thierry Goudon and Pierre-Emmanuel Jabin and Alexis Vasseur},
title = {Limites hydrodynamiques pour les \'equations de {Vlasov-Stokes}},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {7},
pages = {1--16},
year = {2002},
publisher = {Universit\'e de Nantes},
doi = {10.5802/jedp.605},
mrnumber = {1968203},
language = {fr},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.605/}
}
TY - JOUR AU - Thierry Goudon AU - Pierre-Emmanuel Jabin AU - Alexis Vasseur TI - Limites hydrodynamiques pour les équations de Vlasov-Stokes JO - Journées équations aux dérivées partielles PY - 2002 SP - 1 EP - 16 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.605/ DO - 10.5802/jedp.605 LA - fr ID - JEDP_2002____A7_0 ER -
%0 Journal Article %A Thierry Goudon %A Pierre-Emmanuel Jabin %A Alexis Vasseur %T Limites hydrodynamiques pour les équations de Vlasov-Stokes %J Journées équations aux dérivées partielles %D 2002 %P 1-16 %I Université de Nantes %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.605/ %R 10.5802/jedp.605 %G fr %F JEDP_2002____A7_0
Thierry Goudon; Pierre-Emmanuel Jabin; Alexis Vasseur. Limites hydrodynamiques pour les équations de Vlasov-Stokes. Journées équations aux dérivées partielles (2002), article no. 7, 16 p.. doi: 10.5802/jedp.605
[1] Limites fluides pour des modèles cinétiques de brouillards de gouttes monodispersés, C. R. Acad. Sci., 331 (2000) 651-654. | Zbl | MR
[2] , Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, 25 (2000) 737-754. | Zbl | MR
[3] , , Dynamic theory of suspensions with Brownian effects, SIAM J. Appl. Math., 43 (1983) 885-906. | Zbl | MR
[4] , , Solutions of a kinetic stochastic equation modeling a spray in a turbulent gas flow, Math. Models Methods Appl. Sci., 7 (1997) 239-263. | Zbl | MR
[5] , About the modelling of complex flows by gas-particle methods, Preprint CMLA, 2001.
[6] , , Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989) 511-547. VII-14 | Zbl | MR
[7] , , Existence and stability of traveling wave solutions in a kinetic model of two-phase flows, Comm. PDE, 24 (1999) 61-108. | Zbl | MR
[8] , , Limites visqueuses pour des systèmes de type Fokker-Planck-Burgers unidimensionnels, C. R. Acad. Sci., 332 (2001) 863-868. | Zbl | MR
[9] Dumas, , Homogenization of transport equations, SIAM J. Appl. Math., 60 (2000) 1447-1470. | Zbl | MR
[10] , , Elliptic PDE of second order, (Springer, 1983). | Zbl
[11] , , , La méthode de l'entropie relative pour les limites hydrodynamiques de modèles cinétiques Séminaire Equations aux Dérivées Partielles, 1999-2000, Exp. No. XIX, Ecole Polytechnique, Palaiseau, 2000. | Zbl | MR | Numdam
[12] , Asymptotic problems for a kinetic model of two-phase flow, Proc. Royal Soc. Edimburgh, 131, (2001) 1371-1384. | Zbl | MR
[13] , Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Industrial and Appl. Math., 15 (1998) 51-74. | MR
[14] , Umpublished work, Personal Communication.
[15] , , , On the motion of dispersed balls in a potential flow : a kinetic description of the added mass effect, SIAM J. Appl. Math., 60 (1999) 61-83. | Zbl | MR
[16] , Large time concentrations for solutions to kinetic equations with energy dissipation, Comm. PDE., 25 (2000) 541-557. | Zbl | MR
[17] , Macroscopic limit of Vlasov type equations with friction, Ann. IHP Anal. Non Linéaire, 17 (2000) 651-672. | Zbl | MR | Numdam
[18] , , Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid in Modeling in applied sciences, a kinetic theory approach, N. Bellomo, M. Pulvirenti Eds. (Birkhäuser, 2000), pp. 111-147. | Zbl | MR
[19] , Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, III, J. Math. Kyoto Univ. 34 (1994) 391-461, 1994 and 34 (1994) 539-584. | Zbl | MR
[20] , , , High field limit for the VPFP system, Arch. Rat. Mech. Anal., 158 (2001) 29-59. | Zbl | MR
[21] , , Parabolic limit and stability of the Vlasov-PoissonFokker-Planck system, Math. Models Methods Appl. Sci., 10 (2000) 1027-1045. | Zbl | MR
[22] , , Kinetic theory for bubbly flows I, II, SIAM J. Appl. Math., 56 (1996) 327-371. | Zbl | MR
[23] , Compact sets in L p (0,T ; B), Ann. Mat. Pura. Appl. IV, 146 (1987) 65-96. | Zbl | MR
[24] , Combustion theory (Benjamin Cummings Publ., 2nd ed., 1985
Cité par Sources :

