In this paper we established the Carleman estimate for the two dimensional Lamé system with the zero Dirichlet boundary conditions. Using this estimate we proved the exact controllability result for the Lamé system with with a control locally distributed over a subdomain which satisfies to a certain type of nontrapping conditions.
@incollection{JEDP_2002____A5_0, author = {Oleg Yu. Imanuvilov and Masahiro Yamamoto}, title = {Remarks on {Carleman} estimates and exact controllability of the {Lam\'e} system}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {5}, pages = {1--19}, publisher = {Universit\'e de Nantes}, year = {2002}, doi = {10.5802/jedp.603}, mrnumber = {1968201}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.603/} }
TY - JOUR AU - Oleg Yu. Imanuvilov AU - Masahiro Yamamoto TI - Remarks on Carleman estimates and exact controllability of the Lamé system JO - Journées équations aux dérivées partielles PY - 2002 SP - 1 EP - 19 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.603/ DO - 10.5802/jedp.603 LA - en ID - JEDP_2002____A5_0 ER -
%0 Journal Article %A Oleg Yu. Imanuvilov %A Masahiro Yamamoto %T Remarks on Carleman estimates and exact controllability of the Lamé system %J Journées équations aux dérivées partielles %D 2002 %P 1-19 %I Université de Nantes %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.603/ %R 10.5802/jedp.603 %G en %F JEDP_2002____A5_0
Oleg Yu. Imanuvilov; Masahiro Yamamoto. Remarks on Carleman estimates and exact controllability of the Lamé system. Journées équations aux dérivées partielles (2002), article no. 5, 19 p. doi : 10.5802/jedp.603. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.603/
[AK1] F. Alabau, V. Komornik. Boundary observability and controllability of linear elastodynamic systems, Optimization methods in partial differential equations, AMS, Providence (1997). V-17 | Zbl
[AK2] F. Alabau, V. Komornik. Boundary observability, controllability and stabilization of linear elastodynamic systems, SIAM J. Control Optimization 37, 521-542. | MR | Zbl
[AITY] D. Ang, M. Ikehata, D. Trong and M. Yamamoto. Unique continuation for a stationary isotropic Lamé system, Com. P.D.E 21, 371-385 (1998). | MR | Zbl
[B1] M. Bellassoued. Distribution of resonances and decay of the local energy for the elastic wave equations, Comm. Math. Phys. 215, 375-408 (2000). | MR | Zbl
[B2] M. Bellassoued. Carleman estimates and Decay Rate of the local energy for the Neumann problem of elasticity, Progr. Nonlinear Differential Equations Appl. 46,15-36 (2001). | MR | Zbl
[B3] M. Bellassoued. Unicité et contrôlle pour le système de Lamé, ESIAM 6, 561-592 (2001). | Numdam | MR | Zbl
[DR] B. Dehman and L. Robbiano. La propriété du prolongement unique pour un systeme elliptique le système de Lamé, J. Math. Pure Appl. 72, 475-492 (1993). | MR | Zbl
[E1] Y. Egorov. Linear differential equations of the principal type, Consultants Bureau, New York (1986). | MR | Zbl
[E2] Y. Egorov. The uniqueness of the solutions of the Cauchy Problem, Dokl. Akad. Nauk. SSSR 264 (4), 812-814 (1982). | MR | Zbl
[EINT] M. Eller, V. Isakov, G. Nakamura and D. Tataru. Uniqueness and stability in the Cauchy problem for Maxwell's and the elasticity system, Nonlinear Partial Differential Equations, Vol. 16, Collège de France Seminar, ElsevierGauthier Villars "Series in Applied Mathematics", Ed. P.G. Ciarlet, P.L. Lions 7, (2002). | MR | Zbl
[Hö] L. Hörmander L. Partial Differential Operators, Springer-Verlag, Berlin (1963).
[H] M.A. Horn. Implications of sharp regularity results on boundary stabilization of the system of linear elastisity, J. Math. Analysis and Applications 223, 126-150 (1998). | MR | Zbl
[Im] O. Imanuvilov. On Carleman estimates for hyperbolic equations, to appear in Asymptotic Analysis. | MR | Zbl
[IIY] O. Imanuvilov, V. Isakov, M. Yamamoto. An inverse problem for the dynamical Lamé system with two sets of boundary data, Preprint (2002). | MR
[La] J. Lagnese. Boundary stabilization of Thin Plates, SIAM studies in Applied Mathematics (1989). | MR | Zbl
[LL] J. Lagnese and J.L. Lions. Modeling, Analysis and Control of the thin plates, Masson, Paris (1988). V-18 | MR | Zbl
[Li] J.L. Lions. Contrôlabilité exacte, perturbation et stabilization de systèmes distribués, Vol 1, Masson, Paris, 1988. | Zbl
[NW] G. Nakamura, J.-N. Wang. Unique continuation and the Runge approximation property for anisotropic elasticity, Preprint.
[T1] M. Taylor. Pseudodifferential operators, Princeton University Press, Princeton, New Jersey (1981). | MR | Zbl
[T2] M. Taylor. Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, Boston Basel Berlin (1991). | MR | Zbl
[Y1] K. Yamamoto. Singularities of solutions to the boundary value problems for elastic and Maxwell's equation, Japan J. Math. 14 (1),119-163 (1988). | MR | Zbl
[Y2] K. Yamamoto. Exponential energy decay of solutions of elastic wave equations with the Dirichlet condition, Math. Scand. 65, 2006-220 (1989). | MR | Zbl
[Zui] C. Zuily. Uniqueness and non-uniqueness in Cauchy problem, Birkhäuser, Boston Basel Berlin (1983). | MR | Zbl
[W1] N. Weck. Aussenraumaufgaben in der Theorie stationärer Schwingungen inhomogener elastischer Körper, Math. Z. 111, 387-398 (1969). | MR | Zbl
[W2] N. Weck. Unique continuation for systems with Lamé principal part, Math. Meth. Appl. Sci. 24, 595-605 (2001) | MR | Zbl
Cited by Sources: