We introduce by means of reproducing kernel theory and decomposition in orthogonal polynomials canonical correspondences between an interacting Fock space a reproducing kernel Hilbert space and a square integrable functions space w.r.t. a cylindrical measure. Using this correspondences we investigate the structure of the infinite dimensional canonical commutation relations. In particular we construct test functions spaces, distributions spaces and a quantization map which generalized the work of Krée-Rączka [KR] and Janas-Rudol [JR1]-[JR3].
@incollection{JEDP_2004____A2_0, author = {Zied Ammari}, title = {Canonical commutation relations and interacting {Fock} spaces}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {2}, pages = {1--13}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2004}, doi = {10.5802/jedp.2}, mrnumber = {2135357}, zbl = {1067.35082}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.2/} }
TY - JOUR AU - Zied Ammari TI - Canonical commutation relations and interacting Fock spaces JO - Journées équations aux dérivées partielles PY - 2004 SP - 1 EP - 13 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.2/ DO - 10.5802/jedp.2 LA - en ID - JEDP_2004____A2_0 ER -
%0 Journal Article %A Zied Ammari %T Canonical commutation relations and interacting Fock spaces %J Journées équations aux dérivées partielles %D 2004 %P 1-13 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.2/ %R 10.5802/jedp.2 %G en %F JEDP_2004____A2_0
Zied Ammari. Canonical commutation relations and interacting Fock spaces. Journées équations aux dérivées partielles (2004), article no. 2, 13 p. doi : 10.5802/jedp.2. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.2/
[Am] Ammari, Z.: On canonical commutation relations and quantization in infinite dimension spaces, in preparation
[Ar] Aronszajn, N.:Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404 | MR | Zbl
[As] Asai, N.: Analytic characterization of one-mode interacting Fock space, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 4 (2001),409-415 | MR | Zbl
[AB] Accardi, L., Bożejko, M.: Interacting Fock spaces and Gaussianization of probability measures, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 1 (1998), 663-670 | MR | Zbl
[ADKS] Albeverio, S., Daletsky, Yu. L., Kondratiev, Yu. G., Streit, L.,: Non-Gaussian infinite-dimensional analysis, J. Funct. Anal., 138 (1996), 311-350 | MR | Zbl
[AN] Accardi, L., Nahni, M.: Interacting Fock spaces and orthogonal polynomials in several variables, 192-205 | MR | Zbl
[AKK] Asai, N., Kubo, I., Kuo, H. H.: Segal-Bargmann transforms of one-mode interacting Fock spaces associated with Gaussian and Poisson measures, Proc. Amer. Math. Soc., 131 (2003), 815-823 | MR | Zbl
[B1] Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math., 14 (1961), 187-214 | MR | Zbl
[B2] Bargmann, V.: On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory, Comm. Pure Appl. Math., 20, (1967), 1-101 | MR | Zbl
[BSZ] Baez, J. C., Segal, I. E., Zhou, Z.F., Introduction to algebraic and constructive quantum field theory, Princeton Series in Physics, Princeton University Press, (1992) | MR | Zbl
[DX] Dunkl, C., Xu, Y.: Orthogonal Polynomials of Several Variables, Encyclopedia of Mathematics and its Applications, vol. 81, Cambridge Univ. Press, 2001. | MR | Zbl
[JR1] Janas, J., Rudol, K.: Toeplitz operators on the Segal-Bargmann space of infinitely many variables, Linear operators in function spaces (Timişoara, 1988), Oper. Theory Adv. Appl., 43, 217-228, Birkhäuser | MR | Zbl
[JR2] Janas, J., Rudol, K., Toeplitz operators in infinitely many variables, Topics in operator theory, operator algebras and applications (Timişoara, 1994), 147-160, Rom. Acad., Bucharest, 1995 | MR | Zbl
[JR3] Janas, J., Rudol, K.: Two approaches to Toeplitz operators on Fock space, Quantization and infinite-dimensional systems (Bialowieza, 1993), 3-7, Plenum | MR | Zbl
[KR] Krée, P., Rączka, R.: Kernels and symbols of operators in quantum field theory, Ann. Inst. H. Poincaré Sect. A (N.S.), 28 (1978), 41-73 | Numdam | MR | Zbl
[KSWY] Kondratiev, Y. G., Streit, L., Westerkamp, W., Yan, J.,: Generalized functions in infinite-dimensional analysis, Hiroshima Math. J., 28 (1998), 213-260 | MR | Zbl
[M] Martens, F. J. L.: Spaces of analytic functions on inductive/projective limits of Hilbert spaces, Dissertation, Technische Universiteit Eindhoven, Eindhoven, 1988 | MR | Zbl
[vN] von Neumann, J.: Collected works, volume 2, edited by A.H. Taub, Pergamon Press (1961) | Zbl
[Re] Reeh, H.: A remark concerning canonical commutation relations, J. Math. Phys., 29 (1988), 1535-1536 | MR | Zbl
[Sl] Slawny, F.: On factor representations and -algebra of canonical commutation relations, Comm. Math. Phys., 24 (1971), 151-170 | MR | Zbl
[St] Stone. M.H.: Linear transformations in Hilbert space, III: Operational methods and group theory, Proc. Nat. Acad. Sci. USA, 16 (1930), 172-175
Cited by Sources: