Mersenne banner

Books, Proceedings and Seminars of Centre Mersenne

  • Books
  • Seminars
  • Conferences
  • All
  • Author
  • Title
  • References
  • Full text
NOT
Between and
  • All
  • Author
  • Title
  • Date
  • References
  • Keywords
  • Full text
  • Previous
  • Journées équations aux dérivées partielles
  • Year 2014
  • article no. 4
  • Next
Recent results on KAM for multidimensional PDEs
Benoît Grébert1
1 Laboratoire de Mathématiques Jean Leray Université de Nantes, UMR CNRS 6629 2, rue de la Houssinière 44322 Nantes Cedex 03, France
Journées équations aux dérivées partielles (2014), article no. 4, 12 p.
  • Abstract

In this short overview I present some recent results about the KAM theory for multidimensional partial differential equations (PDEs) trying to avoid technicalities. In particular I will not state a precise KAM theorem but I will focus on the dynamical consequences for the PDEs: the existence and the stability (or not) of quasi periodic in time solutions. Concretely, I present the complete study of the nonlinear beam equation on the d-dimensional torus recently obtained in collaboration with H. Eliasson and S. Kuksin. When d≥2 we are able to construct explicit examples where the quasi periodic solutions are linearly unstable, a new feature in Hamiltonian PDEs that could complement recent results in weak turbulence theory.

  • Article information
  • Export
  • How to cite
DOI: 10.5802/jedp.107
Keywords: Multidimensional PDEs, Quasi periodic solutions, KAM theory, stable and unstable tori
Author's affiliations:
Benoît Grébert 1

1 Laboratoire de Mathématiques Jean Leray Université de Nantes, UMR CNRS 6629 2, rue de la Houssinière 44322 Nantes Cedex 03, France
  • BibTeX
  • RIS
  • EndNote
@incollection{JEDP_2014____A4_0,
     author = {Beno{\^\i}t Gr\'ebert},
     title = {Recent results on {KAM} for multidimensional {PDEs}},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {4},
     pages = {1--12},
     publisher = {Groupement de recherche 2434 du CNRS},
     year = {2014},
     doi = {10.5802/jedp.107},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.107/}
}
TY  - JOUR
AU  - Benoît Grébert
TI  - Recent results on KAM for multidimensional PDEs
JO  - Journées équations aux dérivées partielles
PY  - 2014
SP  - 1
EP  - 12
PB  - Groupement de recherche 2434 du CNRS
UR  - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.107/
DO  - 10.5802/jedp.107
LA  - en
ID  - JEDP_2014____A4_0
ER  - 
%0 Journal Article
%A Benoît Grébert
%T Recent results on KAM for multidimensional PDEs
%J Journées équations aux dérivées partielles
%D 2014
%P 1-12
%I Groupement de recherche 2434 du CNRS
%U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.107/
%R 10.5802/jedp.107
%G en
%F JEDP_2014____A4_0
Benoît Grébert. Recent results on KAM for multidimensional PDEs. Journées équations aux dérivées partielles (2014), article  no. 4, 12 p. doi : 10.5802/jedp.107. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.107/
  • References
  • Cited by

[1] V.I. Arnold, Mathematical methods in classical mechanics; 3d edition, Springer-Verlag, Berlin, 2006. | Zbl

[2] M. Berti, P. Bolle, Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential, Nonlinearity 25 (2012), 2579-2613. | MR | Zbl

[3] M. Berti, P. Bolle, Quasi-periodic solutions with Sobolev regularity of NLS on T d with a multiplicative potential, J. Eur. Math. Soc. 15 (2013), 229-286. | MR | Zbl

[4] M. Berti, L. Corsi, M. Procesi, An Abstract Nash-Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds, Comm. Math. Phys (2014).

[5] M. Berti, M. Procesi, Nonlinear wave and Schrödinger equations on compact Lie groups and Homogeneous spaces, Duke Math. J. 159, 479-538 (2011). | MR | Zbl

[6] J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equation, Ann. Math. 148 (1998), 363-439. | MR | Zbl

[7] J. Bourgain, Green’s function estimates for lattice Schrödinger operators and applications, Annals of Mathematical Studies, Princeton, 2004. | MR | Zbl

[8] R. De La Llave, C. E. Wayne, Whiskered and low dimensional tori in nearly integrable Hamiltonian systems, MPEJ 10 (2004), paper 5. | MR | Zbl

[9] J.-M. Delort, Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential, Comm. Partial Differential Equations 39 (2014), 1Ð33. | MR | Zbl

[10] L. H. Eliasson, Almost reducibility of linear quasi-periodic systems, in Smooth ergodic theory and its applications (Seattle, WA, 1999), 679-705, Proc. Sympos. Pure Math., 69, Amer. Math. Soc., Providence, RI, 2001. | MR | Zbl

[11] L. H. Eliasson, B. Grébert and S. B. Kuksin, KAM for the nonlinear beam equation 2: a normal form theorem, preprint. | MR

[12] L. H. Eliasson, B. Grébert and S. B. Kuksin, KAM for the nonlinear beam equation 1: small-amplitude solutions, preprint.

[13] L. H. Eliasson and S. B. Kuksin, On reducibility of Schrödinger equations with quasiperiodic in time potentials, Comm. Math. Phys. 286 (2009), 125–135. | MR | Zbl

[14] L. H. Eliasson and S. B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. Math 172 (2010), 371-435. | MR | Zbl

[15] E. Fermi, J. R. Pasta and S. M. Ulam, Studies of nonlinear problems. Collected works of E. Fermi, vol.2. Chicago University Press, Chicago, 1965.

[16] G. Gallavotti (editor). The Fermi-Pasta-Ulam problem Lectures Notes in Physics 728 Springer-Verlag, Berlin, 2008 | MR | Zbl

[17] J. Geng and J. You, A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces, Comm. Math. Phys., 262 (2006), 343–372. | MR | Zbl

[18] J. Geng and J. You, KAM tori for higher dimensional beam equations with constant potentials, Nonlinearity, 19 (2006), 2405–2423. | MR | Zbl

[19] B. Grébert, KAM for KG on 𝕊 2 and for the quantum harmonic oscillator on ℝ 2 , preprint arXiv:1410.8084.

[20] B. Grébert and L. Thomann, KAM for the Quantum Harmonic Oscillator, Comm. Math. Phys., 307 (2011), 383–427. | MR | Zbl

[21] S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Funct. Anal. Appl., 21 (1987), 192–205. | MR | Zbl

[22] S. B. Kuksin, Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Mathematics, 1556, Springer-Verlag, Berlin, 1993. | MR | Zbl

[23] S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math. 143 (1996), 149–179. | MR | Zbl

[24] T. Kappeler and J. Pöschel, KAM & KdV, Springer-Verlag, Berlin, 2003.

[25] J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), no. 1, 119–148. | Numdam | MR | Zbl

[26] C. Procesi and M. Procesi, A normal form of the nonlinear Schrödinger equation with analytic non–linearities, Comm. Math. Phys 312 (2012), 501-557. | MR | Zbl

[27] C. Procesi and M. Procesi, A KAM algorithm for the resonant nonlinear Schrödinger equation, preprint 2013.

[28] W.-M. Wang, Nonlinear Schrödinger equations on the torus, Monograph, 156 pp, 2014 (submitted).

Cited by Sources:

Web publisher : Published by : Developed by :
  • Follow us