The vortex method is a common numerical and theoretical approach used to implement the motion of an ideal flow, in which the vorticity is approximated by a sum of point vortices, so that the Euler equations read as a system of ordinary differential equations. Such a method is well justified in the full plane, thanks to the explicit representation formulas of Biot and Savart. In an exterior domain, we also replace the impermeable boundary by a collection of point vortices generating the circulation around the obstacle. The density of these point vortices is chosen in order that the flow remains tangent at midpoints between adjacent vortices. In this work, we provide a rigorous justification for this method in exterior domains. One of the main mathematical difficulties being that the Biot-Savart kernel defines a singular integral operator when restricted to a curve. For simplicity and clarity, we only treat the case of the unit disk in the plane approximated by a uniformly distributed mesh of point vortices. The complete and general version of our work is available in [1].
La méthode des vortex est une approche théorique et numérique couramment utilisée afin d’implémenter le mouvement d’un fluide parfait, dans laquelle le tourbillon est approché par une somme de points vortex, de sorte que les équations d’Euler se réécrivent comme un système d’équations différentielles ordinaires. Une telle méthode est rigoureusement justifiée dans le plan complet, grâce aux formules explicites de Biot et Savart. Dans un domaine extérieur, nous remplaçons également le bord imperméable par une collection de points vortex, générant une circulation autour de l’obstacle. La densité de ces points est choisie de sorte que le flot demeure tangent au bord sur certains points intermédiaires aux paires de tourbillons adjacents sur le bord. Dans ce travail, nous proposons une justification rigoureuse de cette méthode dans des domaines extérieurs. L’une des principales difficultés mathématiques étant que le noyau de Biot-Savart définit un opérateur intégral singulier lorsqu’il est restreint à une courbe. Par souci de simplicité et de clarté, nous traitons seulement le cas du disque unité dans le plan, approché par un maillage de points uniformément répartis. La version complète et générale de notre travail est disponible en [1].
@incollection{JEDP_2014____A5_0, author = {Diogo Ars\'enio and Emmanuel Dormy and Christophe Lacave}, title = {The vortex method for {2D} ideal flows in the exterior of a disk}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {5}, pages = {1--22}, publisher = {Groupement de recherche 2434 du CNRS}, year = {2014}, doi = {10.5802/jedp.108}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.108/} }
TY - JOUR AU - Diogo Arsénio AU - Emmanuel Dormy AU - Christophe Lacave TI - The vortex method for 2D ideal flows in the exterior of a disk JO - Journées équations aux dérivées partielles PY - 2014 SP - 1 EP - 22 PB - Groupement de recherche 2434 du CNRS UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.108/ DO - 10.5802/jedp.108 LA - en ID - JEDP_2014____A5_0 ER -
%0 Journal Article %A Diogo Arsénio %A Emmanuel Dormy %A Christophe Lacave %T The vortex method for 2D ideal flows in the exterior of a disk %J Journées équations aux dérivées partielles %D 2014 %P 1-22 %I Groupement de recherche 2434 du CNRS %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.108/ %R 10.5802/jedp.108 %G en %F JEDP_2014____A5_0
Diogo Arsénio; Emmanuel Dormy; Christophe Lacave. The vortex method for 2D ideal flows in the exterior of a disk. Journées équations aux dérivées partielles (2014), article no. 5, 22 p. doi : 10.5802/jedp.108. https://proceedings.centre-mersenne.org/articles/10.5802/jedp.108/
[1] D. Arsénio; E. Dormy; C. Lacave The Vortex Method for 2D Ideal Flows in Exterior Domains (2014) (In progress)
[2] S. M. Belotserkovsky; I. K. Lifanov Method of discrete vortices, CRC Press, Boca Raton, FL, 1993, pp. vii+451 (Translated from the 1985 Russian edition by V. A. Khokhryakov and revised by the authors) | MR
[3] J.-P. Choquin; G.-H. Cottet; S. Mas-Gallic On the validity of vortex methods for nonsmooth flows, Vortex methods (Los Angeles, CA, 1987) (Lecture Notes in Math.), Volume 1360, Springer, Berlin, 1988, pp. 56-67 | DOI | MR | Zbl
[4] Georges-Henri Cottet; Petros D. Koumoutsakos Vortex methods, Cambridge University Press, Cambridge, 2000, pp. xiv+313 (Theory and practice) | DOI | MR | Zbl
[5] R. Courant; D. Hilbert Methods of mathematical physics. Vol. II, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1989, pp. xxii+830 (Partial differential equations, Reprint of the 1962 original, A Wiley-Interscience Publication) | MR | Zbl
[6] David Gérard-Varet; Christophe Lacave The Two-Dimensional Euler Equations on Singular Exterior Domains, Submitted (2013) (arXiv preprint arXiv:1311.5988)
[7] David Gilbarg; Neil S. Trudinger Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001, pp. xiv+517 (Reprint of the 1998 edition) | MR | Zbl
[8] AS Ginevsky; AI Zhelannikov Vortex wakes of Aircrafts, Springer, 2009
[9] Jonathan Goodman; Thomas Y. Hou; John Lowengrub Convergence of the point vortex method for the -D Euler equations, Comm. Pure Appl. Math., Volume 43 (1990) no. 3, pp. 415-430 | DOI | MR | Zbl
[10] J. D. Gray; S. A. Morris When is a function that satisfies the Cauchy-Riemann equations analytic?, Amer. Math. Monthly, Volume 85 (1978) no. 4, pp. 246-256 | MR | Zbl
[11] C Hirsch Numerical computation of internal and external flows, Wiley series in numerical methods in engineering (1988)
[12] D. Iftimie; M. C. Lopes Filho; H. J. Nussenzveig Lopes Two dimensional incompressible ideal flow around a small obstacle, Comm. Partial Differential Equations, Volume 28 (2003) no. 1-2, pp. 349-379 | DOI | MR | Zbl
[13] Andrew J. Majda; Andrea L. Bertozzi Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, 27, Cambridge University Press, Cambridge, 2002, pp. xii+545 | MR | Zbl
[14] Carlo Marchioro; Mario Pulvirenti On the vortex-wave system, Mechanics, analysis and geometry: 200 years after Lagrange (North-Holland Delta Ser.), North-Holland, Amsterdam, 1991, pp. 79-95 | MR | Zbl
[15] N. I. Muskhelishvili Singular integral equations, Wolters-Noordhoff Publishing, Groningen, 1972, pp. xii+7–447 (Boundary problems of functions theory and their applications to mathematical physics, Revised translation from the Russian, edited by J. R. M. Radok, Reprinted) | MR | Zbl
[16] Steven Schochet The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math., Volume 49 (1996) no. 9, pp. 911-965 | DOI | MR | Zbl
[17] Eleuterio F. Toro Riemann solvers and numerical methods for fluid dynamics, Springer-Verlag, Berlin, 1999, pp. xx+624 (A practical introduction) | DOI | MR | Zbl
Cited by Sources: