In this paper we analyze the limit set of nonelementary subgroups acting by isometries on the product of two pinched Hadamard manifolds. Following M. Burger’s and P. Albuquerque’s works, we study the properties of Patterson-Sullivan’s measures on the limit sets of graph groups associated to convex cocompact groups.
@article{TSG_2006-2007__25__105_0, author = {Fran\c{c}oise Dal{\textquoteright}Bo and Inkang Kim}, title = {Shadow lemma on the product of {Hadamard} manifolds and applications}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {105--119}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {25}, year = {2006-2007}, doi = {10.5802/tsg.250}, mrnumber = {2478811}, zbl = {1163.53320}, language = {en}, url = {https://proceedings.centre-mersenne.org/articles/10.5802/tsg.250/} }
TY - JOUR AU - Françoise Dal’Bo AU - Inkang Kim TI - Shadow lemma on the product of Hadamard manifolds and applications JO - Séminaire de théorie spectrale et géométrie PY - 2006-2007 SP - 105 EP - 119 VL - 25 PB - Institut Fourier PP - Grenoble UR - https://proceedings.centre-mersenne.org/articles/10.5802/tsg.250/ DO - 10.5802/tsg.250 LA - en ID - TSG_2006-2007__25__105_0 ER -
%0 Journal Article %A Françoise Dal’Bo %A Inkang Kim %T Shadow lemma on the product of Hadamard manifolds and applications %J Séminaire de théorie spectrale et géométrie %D 2006-2007 %P 105-119 %V 25 %I Institut Fourier %C Grenoble %U https://proceedings.centre-mersenne.org/articles/10.5802/tsg.250/ %R 10.5802/tsg.250 %G en %F TSG_2006-2007__25__105_0
Françoise Dal’Bo; Inkang Kim. Shadow lemma on the product of Hadamard manifolds and applications. Séminaire de théorie spectrale et géométrie, Tome 25 (2006-2007), pp. 105-119. doi : 10.5802/tsg.250. https://proceedings.centre-mersenne.org/articles/10.5802/tsg.250/
[1] P. Albuquerque Patterson-Sullivan theory in higher rank symmetric spaces, Geom. Funct. Anal., Volume 9 (1999) no. 1, pp. 1-28 | MR | Zbl
[2] Y. Benoist Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal., Volume 7 (1997) no. 1, pp. 1-47 | MR | Zbl
[3] Marc Bourdon Structure conforme au bord et flot géodésique d’un -espace, Enseign. Math. (2), Volume 41 (1995) no. 1-2, pp. 63-102 | Zbl
[4] Marc Burger Intersection, the Manhattan curve, and Patterson-Sullivan theory in rank , Internat. Math. Res. Notices (1993) no. 7, pp. 217-225 | MR | Zbl
[5] Françoise Dal’bo Géométrie d’une famille de groupes agissant sur le produit de deux variétés d’Hadamard, Séminaire de Théorie Spectrale et Géométrie, No. 15, Année 1996–1997 (Sémin. Théor. Spectr. Géom.), Volume 15, Univ. Grenoble I, Saint, 1997, pp. 85-98 | Numdam | Zbl
[6] Françoise Dal’bo Remarques sur le spectre des longueurs d’une surface et comptages, Bol. Soc. Brasil. Mat. (N.S.), Volume 30 (1999) no. 2, pp. 199-221 | Zbl
[7] Françoise Dal’Bo; Inkang Kim A criterion of conjugacy for Zariski dense subgroups, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000) no. 8, pp. 647-650 | Zbl
[8] Françoise Dal’Bo; Inkang Kim Marked length rigidity for symmetric spaces, Comment. Math. Helv., Volume 77 (2002) no. 2, pp. 399-407 | Zbl
[9] Françoise Dal’bo; Marc Peigné Some negatively curved manifolds with cusps, mixing and counting, J. Reine Angew. Math., Volume 497 (1998), pp. 141-169 | Zbl
[10] Étienne Ghys; Pierre de la Harpe La propriété de Markov pour les groupes hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) (Progr. Math.), Volume 83, Birkhäuser Boston, Boston, MA, 1990, pp. 165-187 | Zbl
[11] Yves Guivarc’h Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dynam. Systems, Volume 10 (1990) no. 3, pp. 483-512 | Zbl
[12] Ernst Heintze; Hans-Christoph Im Hof Geometry of horospheres, J. Differential Geom., Volume 12 (1977) no. 4, p. 481-491 (1978) | MR | Zbl
[13] Inkang Kim Ergodic theory and rigidity on the symmetric space of non-compact type, Ergodic Theory Dynam. Systems, Volume 21 (2001) no. 1, pp. 93-114 | MR | Zbl
[14] Inkang Kim Marked length rigidity of rank one symmetric spaces and their product, Topology, Volume 40 (2001) no. 6, pp. 1295-1323 | MR | Zbl
[15] Inkang Kim Rigidity on symmetric spaces, Topology, Volume 43 (2004) no. 2, pp. 393-405 | MR | Zbl
[16] Inkang Kim Isospectral finiteness on hyperbolic 3-manifolds, Comm. Pure Appl. Math., Volume 59 (2006) no. 5, pp. 617-625 | MR | Zbl
[17] Gabriele Link Limit sets of discrete groups acting on symmetric spaces, Fakultät für Mathematik, Mathematisches Institut II (Math. Inst. II) (2002) (Dissertation)
[18] Peter J. Nicholls The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, 143, Cambridge University Press, Cambridge, 1989 | MR | Zbl
[19] J. F. Quint Sous-groupes discrets des groupes de Lie semi-simples réels et p-adiques, Paris VII (2001) (Ph. D. Thesis)
Cité par Sources :