We establish a sharp upper bound for the resonance counting function for a class of asymptotically hyperbolic manifolds in arbitrary dimension, including convex, cocompact hyperbolic manifolds in two dimensions. The proof is based on the construction of a suitable paramatrix for the absolute -matrix that is unitary for real values of the energy. This paramatrix is the -matrix for a model laplacian corresponding to a separable metric near infinity. The proof of the upper bound on the resonance counting function requires estimates on the growth of the relative scattering phase, and singular values of a family of integral operators.
@incollection{JEDP_2000____A7_0, author = {R. G. Froese and Peter D. Hislop}, title = {On the distribution of resonances for some asymptotically hyperbolic manifolds}, booktitle = {}, series = {Journ\'ees \'equations aux d\'eriv\'ees partielles}, eid = {7}, pages = {1--16}, publisher = {Universit\'e de Nantes}, year = {2000}, zbl = {01808697}, mrnumber = {2001j:58054}, language = {en}, url = {https://proceedings.centre-mersenne.org/item/JEDP_2000____A7_0/} }
TY - JOUR AU - R. G. Froese AU - Peter D. Hislop TI - On the distribution of resonances for some asymptotically hyperbolic manifolds JO - Journées équations aux dérivées partielles PY - 2000 SP - 1 EP - 16 PB - Université de Nantes UR - https://proceedings.centre-mersenne.org/item/JEDP_2000____A7_0/ LA - en ID - JEDP_2000____A7_0 ER -
%0 Journal Article %A R. G. Froese %A Peter D. Hislop %T On the distribution of resonances for some asymptotically hyperbolic manifolds %J Journées équations aux dérivées partielles %D 2000 %P 1-16 %I Université de Nantes %U https://proceedings.centre-mersenne.org/item/JEDP_2000____A7_0/ %G en %F JEDP_2000____A7_0
R. G. Froese; Peter D. Hislop. On the distribution of resonances for some asymptotically hyperbolic manifolds. Journées équations aux dérivées partielles (2000), article no. 7, 16 p. https://proceedings.centre-mersenne.org/item/JEDP_2000____A7_0/
[1] U. Bunke, M. Olbrich, Group cohomology and the singularities of the Selberg zeta function associated to a Kleinian group, Ann. Math. 149, 627-689 (1999). | MR | Zbl
[2] T. Christiansen, Spectral asymptotics for compactly supported perturbations of the Laplacian on ℝn, Commun. PDE 23, 933-948 (1998). | MR | Zbl
[3] R. G. Froese, Upper bounds for the resonance counting function for the Schrödinger operators in odd dimensions, Canadian J. Math. 50, 538-546 (1ç1998). | MR | Zbl
[4] R. G. Froese, P. D. Hislop, Upper bounds for the resonance counting function for some asymptotically hyperbolic manifolds, in preparation.
[5] R. G. Froese, P. D. Hislop, P. A. Perry, A Mourre Estimate and Related Bounds for the Laplace Operator on a Hyperbolic Manifold with Cusps of Nonmaximal Rank, J. Funct. Anal. 98, 292-310 (1991). | MR | Zbl
[6] R. G. Froese, P. D. Hislop, P. A. Perry, The Laplace operator on hyperbolic Manifolds with Cusps of Non-maximal Rank, Inventiones Math. 106, 295-333 (1991). | MR | Zbl
[7] C. Gérard, A. Matrinez, Principe d'absorption limite pour les opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris 306, 121-123 (1988). | Zbl
[8] P. D. Hislop, The geometry and spectra of hyperbolic manifolds, Proc. Indian Acad. Sci. (Math. Sci.) 104, 715-776 (1994). | MR | Zbl
[9] L. Guillopé, M. Zworski, Polynomial bounds on the number of resonances for some complete spaces of constant negative curvature at infinity, Asymp. Anal. 11, 1-22 (1995). | MR | Zbl
[10] L. Guillopé, M. Zworski, Upper bounds on the number of resonances of non-compact Riemann surfaces, J. Func. Anal. 129, 364-389 (1995). | MR | Zbl
[11] L. Guillopé, M. Zworski, Scattering asymptotics for Riemann surfaces, Ann. of Math. 145, 597-660 (1997). | MR | Zbl
[12] A. Jensen, High energy resolvent estimates for generalized many-body Schrödinger operators, Publ. RIMS, Kyoto Univ. 25, 155-167 (1989). | MR | Zbl
[13] M. S. Joshi, A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 2000. | MR | Zbl
[14] P. Lax, R. S. Phillips, Scattering theory for automorphic functions, Ann. Math. Studies 87, Princeton : Princeton University Press, 1976. | MR | Zbl
[15] N. Mandouvalos, Scattering operator and Eisenstein integral for Kleinian groups, Math. Proc. Cambridge Philos. Soc. 108, 203-217 (1990). | MR | Zbl
[16] R. Mazzeo, R. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75, 260-310 (1987). | MR | Zbl
[17] S. J. Patterson, The Laplacian operator on a Riemann surface, I, II, and III, Compositio math. 31, 83-107 (1975) ; 32, 71-112 (1976) ; 33, 227-259 (1976). | Numdam | MR | Zbl
[18] S. J. Patterson, P. A. Perry, Divisor of the Selberg Zeta function, I. Even Dimensions, to appear in Duke Math. J. 2000.
[19] P. A. Perry, The Laplace operator on a hyperbolic manifold. II. Eisenstein series and the scattering matrix, J. reine. angew. Math. 398, 67-91 (1989). | MR | Zbl
[20] P. A. Perry, The Selberg zeta function and a local trace formula for Kleinian groups, J. reine. angew. Math. 410, 116-152 (1990). | MR | Zbl
[21] P. A. Perry, The Selberg Zeta function and scattering poles for Kleinian groups, Bull. Amer. Math. Soc. (N. S.) 24, 327-333 (1991). | MR | Zbl
[22] P. A. Perry, Poisson formula and lower bounds on resonances for hyperbolic manifolds, preprint 2000.
[23] D. Robert, On the Weyl formula for obstacles, in «Partial differential equations and mathematical physics», 264-285, Progress in Nonlinear Differential Equations and their Applications, Boston : Birhäuser, 1996. | MR | Zbl
[24] D. Robert, Asymptotique de la phase de diffusion à haute énergie pours les perturbations de second ordre du Laplacien, Ann. Scien. Ecole Norm. Sup. 25, 107-124 (1992). | Numdam | MR | Zbl
[25] G. Vodev, Sharp bounds on the number of scattering poles for perturbations of the Laplacian, Commun. Math. Phys. 146, 205-216 (1992). | MR | Zbl
[26] M. Zworski, Dimension of the limit set and the density of resonances for convex co-compact hyperbolic surfaces, to appear in Inventionnes math. 1999. | MR | Zbl
[27] M. Zworski, Counting Scattering Poles, in Spectral and Scattering Theory, M. Ikawa, ed., Marcel Decker, 1994. | MR | Zbl