Mersenne banner

Livres, Actes et Séminaires du Centre Mersenne

  • Livres
  • Séminaires
  • Congrès
  • Tout
  • Auteur
  • Titre
  • Bibliographie
  • Plein texte
NOT
Entre et
  • Tout
  • Auteur
  • Titre
  • Date
  • Bibliographie
  • Mots-clés
  • Plein texte
  • Précédent
  • Journées équations aux dérivées partielles
  • Année 1999
  • article no. 6
  • Suivant
Kähler-Einstein metrics singular along a smooth divisor
Raffe Mazzeo
Journées équations aux dérivées partielles (1999), article no. 6, 10 p.
  • Résumé

In this note we discuss some recent and ongoing joint work with Thalia Jeffres concerning the existence of Kähler-Einstein metrics on compact Kähler manifolds which have a prescribed incomplete singularity along a smooth divisor D. We shall begin with a general discussion of the problem, and give a rough outline of the “classical” proof of existence in the smooth case, due to Yau and Aubin, where no singularities are prescribed. Following this is a discussion of the geometry of the conical or edge singularities and then some discussion of the new elements of the proof in this context.

  • Détail
  • Export
  • Comment citer
Zbl
  • BibTeX
  • RIS
  • EndNote
@incollection{JEDP_1999____A6_0,
     author = {Raffe Mazzeo},
     title = {K\"ahler-Einstein metrics singular along a smooth divisor},
     booktitle = {},
     series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
     eid = {6},
     pages = {1--10},
     publisher = {Universit\'e de Nantes},
     year = {1999},
     zbl = {01810579},
     language = {en},
     url = {https://proceedings.centre-mersenne.org/item/JEDP_1999____A6_0/}
}
TY  - JOUR
AU  - Raffe Mazzeo
TI  - Kähler-Einstein metrics singular along a smooth divisor
JO  - Journées équations aux dérivées partielles
PY  - 1999
SP  - 1
EP  - 10
PB  - Université de Nantes
UR  - https://proceedings.centre-mersenne.org/item/JEDP_1999____A6_0/
LA  - en
ID  - JEDP_1999____A6_0
ER  - 
%0 Journal Article
%A Raffe Mazzeo
%T Kähler-Einstein metrics singular along a smooth divisor
%J Journées équations aux dérivées partielles
%D 1999
%P 1-10
%I Université de Nantes
%U https://proceedings.centre-mersenne.org/item/JEDP_1999____A6_0/
%G en
%F JEDP_1999____A6_0
Raffe Mazzeo. Kähler-Einstein metrics singular along a smooth divisor. Journées équations aux dérivées partielles (1999), article  no. 6, 10 p. https://proceedings.centre-mersenne.org/item/JEDP_1999____A6_0/
  • Bibliographie
  • Cité par

[1] J.-P. Bourguignon, éd Preuve de la Conjecture de Calabi, Astérisque Vol. 58, Soc. Math. France, Paris (1978).

[2] A. Byde, Thesis, Stanford University (2000). In preparation.

[3] S.Y. Cheng and S.T. Yau, On the existence of complete Kähler metrics on non-compact complex manifolds and the regularity of Fefferman's equation, Comm. Pure Appl. Math. 33 No. 4 (1980), 507-544. | MR | Zbl

[4] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. | MR | Zbl

[5] C. Hodgson and S. Kerckhoff, Rigidity of hyperbolic cone manifolds and hyperbolic Dehn surgery, Jour. Diff. Geom. 48 (1998), 1-59. | MR | Zbl

[6] D. Joyce, Asymptotically locally Euclidean metrics with holonomy SU(m), XXX Mathematics Archive Preprint AG/9905041. | Zbl

[7] D. Joyce, Quasi-ALE metrics with holonomy SU(m) and Sp(m), XXX Mathematics Archive Preprint AG/9905043. | Zbl

[8] R. Kobayashi, Einstein-Kähler V metrics on open Satake V -surfaces with isolated quotient singularities, Math. Ann. 272 (1985), 385-398. | MR | Zbl

[9] J. Lee and R. Melrose, Boundary behaviour of the complex Monge-Ampere equation, Acta Math. 148 (1982), 159-192. | MR | Zbl

[10] R. Mcowen, Point singularities and conformal metrics on Riemann surfaces, Proc. Amer. Math. Soc. 103 No. 1 (1988), 222-224. | MR | Zbl

[11] R. Mazzeo, Elliptic theory of differential edge operators I, Comm. Partial Diff. Eq., 16 No. 10 (1991), 1616-1664. | MR | Zbl

[12] R. Mazzeo, Regularity for the singular Yamabe problem, Indiana Univ. Math. Jour. 40 (1991), 1277-1299. | MR | Zbl

[13] B.-W. Schulze, Boundary value problems and singular pseudo-differential operators. Wiley, Chichester - New York, 1998. | MR | Zbl

[14] G. Tian and S.T. Yau, Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry, in Mathematical Aspects of String Theory (S.T. Yau, ed.), World Scientific (1987), 574-628. | MR | Zbl

[15] G. Tian and S.T. Yau, Complete Kähler manifolds with zero Ricci curvature I, J. Amer. Math. Soc., 3 No. 3 (1990), 579-609. | MR | Zbl

[16] G. Tian and S.T. Yau, Complete Kähler manifolds with zero Ricci curvature II, Invent. Math. 106 No. 1 (1991), 27-60. | MR | Zbl

[17] M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 No. 2 (1991), 793-821. | MR | Zbl

Diffusé par : Publié par : Développé par :
  • Nous suivre