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GDR 1151 (CNRS)

Kahler-Einstein metrics singular
along a smooth divisor

Rafe Mazzeo

Abstract
In this note we discuss some recent and ongoing joint work with Thalia

Jeffres concerning the existence of Kahler-Einstein metrics on compact Kahler
manifolds which have a prescribed incomplete singularity along a smooth di-
visor D. We shall begin with a general discussion of the problem, and give
a rough outline of the 'classical' proof of existence in the smooth case, due
to Yau and Aubin, where no singularities are prescribed. Following this is a
discussion of the geometry of the conical or edge singularities and then some
discussion of the new elements of the proof in this context.

1. Background material.

Let (X,^o) be a compact Kahler manifold of complex dimension n. Thus if UJQ is the
corresponding Kahler form, then d^o = 0 and [0:0] is a class in ^^(X). A familiar
question in geometric analysis is to find canonical metrics on a manifold. In this
setting, this is commonly regarded as the search for Kahler-Einstein (KE) metrics.
More specifically, a Kahler metric g on X is said to be KE if its Ricci tensor is a
multiple of the metric. Using the complex structure J to turn the Ricci tensor into
a (1, l)-form p = p g , then we ask that

pg = X^g

for some constant A. By scaling, we can always assume that A = = — l , 0 o r + l .
We narrow the search somewhat by requiring that the Kahler form ujg lie in the

same cohomology class as the Kahler form LJQ for the original metric. Hence ujg — u;o
is exact, and using the 99-Poincare lemma we can write

ujg — (jjo = i99u

for some scalar function u.
There is an immediate obstruction to the existence of such metrics. Let us

define a class c e H1'1^) to be positive if it contains a representative 77 G c such
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that T?(Z, J Z ) > 0 for all nonzero vectors Z in TX. We write this as c > 0. The
set of all positive classes forms an open cone in AT151 (A'). The negative of this cone
is the set of negative classes. Next, it is known that ifg is any Kahler metric on A',
then the associated Ricci form p represents the first Chern class of A", i.e.

[p]=ci(A).

In the lowest dimensional case, when X is a Riemann surface, this is essentially just
the Gauss-Bonnet theorem. Suppose now that g is a KE metric, so that p = \uo.
If A = +1, then [p] = [a;] = Ci(A), and so Ci(A) > 0. Similarly, if A = -1, then
Ci(A) < 0 and if A = 0, then Ci(A) must vanish.

It was conjectured by Calabi in the 1950's that this is the only obstruction.
Through the work of Aubin and Yau in the 1970's, this is now known to be true
in the cases Ci(A) ^ 0. The case Ci(A) = 0, done by Yau, is of particular interest
because the metrics are Ricci flat. Compact Kahler manifolds with vanishing first
Chern class are known as Calabi-Yau manifolds, and play an important role in
mathematical physics and elsewhere. The case A = +1 is much more difficult, and
there are only partial results in this case, through the work of Tian. It is known
that there are further obstructions in this case to the existence of KE metrics.

This conjecture was resolved by proving the existence of a solution of a complex
Monge-Ampere equation. As explained above, for any Kahler metric g with (jjg in
the same cohomology class as 0:0, we have ujg = 0:0 +i09u. It is not hard to calculate
that the metric g is KE if this scalar function u satisfies

^^og^^^'-^-^.^o, (1)
\ del ((9o)zj) )

such that in addition
((5o)zj + V^zj) > 0. (2)

The function F in the definition of the operator M is determined solely by the initial
metric go, and in a sense measures the defect by which po fails to be a KE metric.
Also, this equation has been written relative to any local holomorphic coordinate
system, and the functions u^ are the components of the complex Hessian in these
coordinates, but it may easily by checked that the whole expression is independent
of coordinate system.

2. The proof in the smooth case.

The proof is by the method of continuity. One constructs a family of nonlinear
operators

., , , , /det ((go)u + v^T^-)^
A^)= log——J° , ̂  -eF+\u=0, (3)V det {(go)^) f

where the parameter e € [0,1]. When 6 = 0 , there is the obvious solution u = 0,
and so we seek to show that the set of e in this interval for which there is a solution
is both open and closed.
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The openness argument is quite straightforward in this context, when A ^ 0.
Thus suppose that for some value 6' there is a solution v! of M^(u') = 0 which also
satisfies the positivity condition (2). Let g ' be the associated metric. Then

DM^ {(f>) = \^ + \(f>. (4)

I f A < 0 then this operator is obviously an isomorphism, say from C2'a{X) to (^(.Y),
while if A = 0 then it turns out that we may restrict to functions u with total integral
zero, and so we get an isomorphism again. The fact that this operator need not be
an isomorphism when A > 0 is the first hint of trouble in this case. At any rate, a
straightforward application of the implicit function theorem now shows that for all
6 near to €' there is also a solution to this problem.

The closedness argument is much more difficult. Here, if ej —> 6', and ifuj are the
corresponding solutions, then we would like to show that at least some subsequence
of these functions converges in C2(X), for then we could take a limit in the equation
and hence obtain a solution at the limiting value 6'. This is accomplished by deriving
a priori C3 bounds for solutions u of this equation, independent of the parameter
6. The C° bound is trivial when A < 0, but quite subtle when A = 0. The bounds
for the higher derivatives proceed by obtaining differential inequalities for various
quantities, including in the end the norm squared of the third derivatives of u.

We shall not give any further details of this argument, but refer to [I], where the
complete details, as well as much background material, are to be found.

3. Edge singularities.

We are now finally ready to describe our problem. Suppose that in addition to the
Kahler manifold X we are also given a smooth irreducible divisor D C X. Thus
D is a smooth complex hypersurface. We shall frequently use local coordinates
(C, w i , . . . , Wn-i) == (C\ w) near points of D, where D is locally defined by {C = 0},
and w restricts to a complex coordinate chart along D. Fix a real number a in the
interval (0,1). Then we may write the local model

<7Q = ̂  + l^l2 (5)
for the type of singularity we are trying to prescribe. Note that for 0 < a < 1, g^
is incomplete, and is the product of a Euclidean factor with a cone of opening less
than 7T/2 (the cone angle is easy to describe in terms of a). Note also that when
a = 0 , then g^ is smooth across D, while if a >_ 1 then g^ is complete near C = 0.

Our problem, roughly speaking, is to find a KE metric g with A = -1 which is
asymptotic to g^ as C —^ 0. Existence of KE metrics with A < 0 in the complete
cases where a ^ 1 was accomplished in a series of papers by Tian and Yau [14],
[15], [16]. In addition, quite recently Joyce has constructed Ricci flat KE metrics
on ALE spaces which are resolutions of noncompact orbifolds of the form C^/F [6],
[7]. Some previous results on the existence of KE metrics in this incomplete case,
for orbifolds, were obtained by Kobayashi [8].

Before we can state the theorem more precisely, we must discuss the analogue of
the compatibility condition c^{X) <, 0 in the smooth case. As a guide we consider
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again the case where X is a Riemann surface. A 'smooth, irreducible5 divisor D
in this case is a finite collection {p i , . . . , p^} of distinct points on X. Suppose
that our problem is to construct a hyperbolic (constant curvature —1) metric on
X \ { p i , . . . , P A - } which has the specified asymptotic conic form IriCtP/ICil^S ? ==
1 , . . . , k, where Ci is a local complex coordinate near p;. Suppose first that such a
metric exists. Then by applying the Gauss-Bonnet theorem on a domain obtained
by excising small balls around each of the pi and letting the radius of each of these
balls go to zero, we obtain

A;

^(X)<^a,.
Z=l

Actually, one gets an exact formula, where the term fy K dA = —Area (X) appears
on the right. This is a necessary condition for the existence of such a metric. It
is also sufficient, as demonstrated through the work of Troyanov [17] and McOwen
[10]. The equation to be solved in this lowest dimensional case is semilinear and it
may be handled by barrier methods.

The form of this answer is not apparently immediately adaptable to the higher
dimensional setting, but it motivates the compatibility condition we shall impose:

Ci(X)<aci(L^). (6)

Here Lp is the line bundle associated to the divisor Z), and the inequality is meant
in the sense that ac^Lp) — c\{X} is a positive class.

We may now state our result.

Theorem 1 Suppose (X, go) is a compact Kdhler manifold and D C X a smooth
irreducible divisor. Suppose also that for some - < a < 1, Ci(X) < aci(L^). Then
there exists a Kdhler'Einstein metric g with A = —1 on X\D which is asymptotically
equivalent to the singular metric ga along D. Moreover, the metric g has bounded
curvature, and indeed has a complete polyhomogeneous expansion upon approach to
D.

We make a few remarks. First of all, the restriction that a ^ 1/2 is unfortunate,
but is almost certainly caused by purely technical difficulties. We expect the result
to be true for a in the full range (0,1). A similar restriction occurs in an analogous
real three dimensional hyperbolic problem [5]. Secondly, we also fully expect that
we will be able to prove the existence of Ricci flat Kahler-Einstein metrics, i.e. with
A == 0, however some points remain to be checked. Finally, the situation here is in
many ways analogous to the problem of finding complete KE metrics with A = —1
on the interior of strictly pseudoconvex domains. Existence of such metrics is due to
Cheng and Yau [3], and the refined regularity statement in our theorem is parallel
to the results of Fefferman [4] and Lee and Melrose [9]. In both cases (when the
boundary of the pseudoconvex domain is real analytic, which is automatic for the
divisor), the polyhomogeneous expansion is convergent, as follows from the work of
Byde [2].
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4. Sketch of the proof.

As in the smooth case, we proceed by the continuity method. However, there is an
initial step, which is to show that by using the compatibility condition we may write
down an initial guess for the solution metric g . This will be a Kahler metric which
has the correct singularity, and thus is asymptotic to g^ along D.

To do this, we begin with the volume density Vo for the background smooth
Kahler metric go. Fix an Hermitian metric on the fibres of the line bundle LD and
choose a global section s 6 F(Z^) such that D = ^(O). Finally, set

(3=1-a.

The constant /3 appears more frequently than a hereafter. Now write the new volume
density

T T _ _____YO_____
"" \W-(\-e\\s\W

where e is any number sufficiently small to guarantee that the denominator does not
vanish. Finally we may define the Kahler cone metric g by its Kahler form

uj = i99V.

While this is certainly a (1,1) form, it is. precisely the compatibility condition which
ensures that we may choose our initial smooth metric go and Hermitian metric on
LD so that it is also positive definite away from D. The fact that it is asymptotic
to ga follows from a straightforward calculation.

It is also interesting to note that already g has the property that both uj and
the associated Ricci form p have a distributional (or rather, current) part supported
on D, of the form a6o. Our final solution metric will also have this property, and
so the Kahler-Einstein condition will be satisfied globally in the sense of currents,
rather than just pointwise on X \ D.

Now that we have defined this initial metric, we may write down the same
Monge-Ampere operator M(u) and its deformations Me{u), where .Mi = A4. This
is now a singular, fully nonlinear elliptic operator, because of the appearance of the
coefficients of the metric g in the determinant terms.

We may regularize at least the appearance of this expression by choosing a new
singular coordinate system as follows. This simplifies many of the calculations.
Recalling the smooth complex coordinate C,, we set

.̂ .
Then

dz=^-ad^ and so ^\dz\2 = w. (7)

So we see that using this new coordinate, along with the other coordinates ( w i , . . . , Wn_i
as before, we obtain a singular coordinate system in which the model cone metric
ga takes a particularly simple form. We write this more completely, and add a final
trivial change of variables. Let z = t e10; then 0 < (j> <^ 27I-/3, and so we define
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0 == ( f ) / 0 to make 6 an element of the 'standard7 circle S1. We also multiply g^ by
the constant factor 02 and scale the w coordinates by /?. Performing all of these
changes, we now have

^^d^+^W+lrfwl2. (8)

Now we proceed with the proof. At this point, using the new singular coordinate
system, the Monge-Ampere equation no longer appears as singular. Of course, we
have just shifted the difficulties elsewhere, but we will see the advantage of this
formulation particularly when we study the linearization. At any rate, we again use
the continuity method.

It turns out that the closedness argument does not require vast changes from
the smooth case, so although this step is still not easy, at least the work has been
done for us! There are two main obstacles in making this part of the argument
work. Recall that we are ultimately interested in estimating third derivatives of
the solutions u of Me(u) = 0. Cutting to the end of the argument, we define
S(u) == [V3^)2. Then in both Yau and Aubin's work, a (rather intricate) differential
inequality is derived for this quantity. In truth, this inequality depends on already
having obtained certain types of a priori estimates for lower derivatives. In the
smooth case one considers the point on X where S(u) attains its maximum and
uses the differential inequality (the coefficients of which depend only on previously
estimated quantities) to conclude an a priori upper bound for S(u) itself. In our
case, two different aspects of this argument could fail.

• S{u} might not be bounded on X \ D

• Even if it is, the maximum of S(u) might occur on D.
Although the same differential inequality as in the smooth case remains valid on
X \ D, it yields no information if the maximum occurs somewhere on D.

The first of these difficulties is resolved by carefully choosing the function space
in which u lies. We shall describe this later when we come to the linear analysis.
Having made this choice, we may now assume at least that S{u) is bounded on X\D.
If its maximum does occur on P, then we modify the function S(u) by adding to it
some explicit quantity H which has the effect that the maximum of S{u) +H occurs
away from D. The point here is that again by the choice of function space, we know
the asymptotic behaviour of S(u) near D, and so it is easy to find a suitable function
H which moves the maximum away from the divisor. Without going into further
details, this finally allows us to conclude the a priori C3 estimates for solutions u.

The openness part of the continuity argument requires substantial new work. As
before, we would like to be able to apply the implicit function theorem to A^o and
this requires an understanding of the mapping properties of the linearization of this
operator. As in the smooth case,

PA^|, (0) = (^ - 1)0,

where g^ is the metric associated with uj + i99u where Me(u) = 0. For reasons of
homogeneity, we shall consider instead the equivalent operator

L=t2^-!). (9)
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This operator L is an elliptic, differential edge operator, of the type studied
extensively in [11]. (A parallel study of these sorts of operators has also been
undertaken by Schuize et al. [13], and various special cases have been studied by
many other researchers.) We record that near ( = 0 it has the form

L=(^)2+/3-2^+<2A,+....,

where the omitted terms on the end are higher order in the sense that they are
products of at most two of the basic factors t9t^ 9e and t9^ with at least one extra
factor of t in front. We briefly state some of the main results for operators of this
sort.

The first main issue is mapping properties of L. It turns out to be natural to
consider these mapping properties on a scale of weighted Holder spaces (though we
could equally well have used weighted Sobolev spaces). We define

/^7 _ 4(5/^/7
^6 ~ L -0 5

where C^ is the Holder space based on differentiations with respect to the vector
fields t9t, 9e and t9^. Alternately, the norms of these spaces with subscript 0 are
invariant under the (local) dilations {t,0,w) —> (A^,0 ,Aw), A > 0. It is elementary
to check that

r . ^A:-h2,7 __^ nk^
L . L^ ——> Lg

for any 0 < 7 < 1 and 6 e R.

Theorem 2 This mapping is semi-Fredholm provided 6 ^ {j//5 : j e Z}.

Unfortunately the statement that L is only semi-Fredholm is optimal, because
when 8 < 0, L has an infinite dimensional nullspace, while when 6 > 0, the range of
L has infinite codimension. The cokernel, respectively nullspace, in these two cases
is at most finite dimensional. When 6 happens to equal one of these omitted values,
then the mapping does not even have closed range. The numbers j / ( 3 are called the
indicial roots of the problem, in analogy with the one-dimensional regular singular
theory. Because the term in L of order zero is negative, we may easily conclude

Corollary 1 L is injective when 6 > 0 and surjective when S < 0; 6 ̂  j / / 3 .

Now we see rather clearly the dilemma with which we are faced. The function
spaces most suited for the linear analysis, namely say CJ'7 with 6 < 0 where L is
surjective, are very poorly suited for the nonlinear theory, since the Monge-Ampere
operators Me surely do not preserve any of these spaces. The spaces these nonlinear
operators do preserve, when 6 > 0, are not well suited for the linear theory and the
application of the implicit function theorem.

To proceed further, we quote an asymptotics result, again from [11].

Proposition 1 If 6 > 0 and f € C^'7, then any solution u € C2'7 of Lu = f for
— l / f 3 < r ] < 0 has a partial asymptotic expansion of the form

u=^u^\ogt+ ^ u^^+v
i<6 i^-jQ<6

where the Ui and u^ are functions of (0, w) and v == 0(t5).
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We omit discussion of the precise regularity of the coefficient functions and of v
because this is a rather delicate issue.

As already noted, there are infinitely many solutions of the equation Lu = /
with u € C^. Most of these are still unsuitable for the linear analysis because
they are unbounded on account of the log term UQ \ogt in the expansion. Somewhat
remarkable there is precisely one solution which is bounded

Proposition 2 Given f as above, there is exactly one solution u of Lu == / which
has an expansion as above with the coefficients Ui all equal to zero.

The assignment
f—^u^Gf

is actually rather well-behaved because the operator G is a pseudodifferential edge
operator in the calculus defined in [11]. Thus we can obtain rather specific infor-
mation about the solution u in terms of /. More specifically, the Schwartz kernel
of G, which is a distribution on (X \ D)2, turns out to be the pushforward of a
rather simple distribution on a geometric resolution (blow-up) of a compactification
of this space. It has polyhomogeneous expansions at the various boundaries of this
compactification as well as along the diagonal.

We comment on what is really going on. As we have already explained, the
weight 6 == 0 is critical for this problem, and this value divides the ranges for which
the analytic and geometric problems are well-posed. In this sense, this problem
may be regarded as one with a 'critical exponent5. Our solution is to use this right
inverse G described above. It is not bounded from C^ to C^7, but it is bounded if
we restrict the domain to the subspace C^'.

We now see the various constraints placed on the function space B of which u is
an element. B should be defined as the image under G of some subspace B' C C°'7
for some S > 0, so that automatically LB = B ' . Also, Me should carry B to B ' .
Finally, we also require that if u 6 B, then the third order quantity S for the metric
g associated to u must be bounded, and we also wish that the sectional curvatures
of g be bounded. Accomplishing all of these objectives is not so easy, unfortunately,
and although there are at least a few viable choices which work, it is really a matter
of taste which of these is preferable. For example, if we use the most obvious choice,
B' = C^'7, then as we have already mentioned, the regularity of the coefficients in
the expansion for u == Gf, f € B', is somewhat complicated, and it requires some
delicate analysis to ensure that the nonlinear operator Me acts properly. At the
other extreme, we could choose B1 to be the space A6 of conormal functions of
weight S. Elements of this space have complete regularity in the interior, as well
as full tangential regularity as t —> 0. The space B is then a space of partially
polyhomogeneous functions, where the coefficients u^ are all smooth. The price
here is that these are Frechet spaces, and we must check all the hypotheses of the
Nash-Moser implicit function theorem, which again is rather cumbersome. We omit
further discussion of these details.

We do wish to briefly discuss a bit more about the partial expansions and coeffi-
cients Uij{0,w). There are two main issues. The first is exactly how many terms of
the expansion must be included, and the second is the dependence of these coeffi-
cients on 6. We leave aside the question of their regularity. Recalling that we want
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third derivatives (with respect to the variables {z,w)) to be bounded as ( -^ 0, we
see that the integral powers fz^o do not cause any problems, but that any terms
of the form t^^u^ will be problematic if i + j / ( 3 < 3, j ^ 0. Thus we must take
particular care of the terms u^i31^ for j / ( 3 < 3. If /3 < 1/3 (so a > 2/3), then there
are no such terms at all, while if 1/3 < /? < 1/2, so a > 1/2. then there is one such
bad term. To control it we need to know something about its coefficient ^01. In
fact, an argument involving substituting u into the nonlinear equation and collecting
terms of the resulting function, which again has a partial expansion, yields first that
UOQ is a function of w alone, and then that 'uoi = a(w) cos0 + b(w) sm0. It is then
straightforward to check that the third derivatives of u are bounded, as desired.
The cases /3 •==- 1/3, 1/2 are handled by similar, but more involved calculations. It
is almost surely the case that this same sort of argument carried further will allow
us to extend the validity of the theorem to all values of /?, and hence a, in (0,1).

We remark also that an additional regularity argument is needed. On the one
hand, the openness argument produces solutions which have at least a partial expan-
sion near D, while the solutions obtained in the limiting process in the closedness
argument do not seem to necessarily have this property. In fact, it is possible to
show that all solutions which are weakly asymptotic to g^ actually have a complete
polyhomogeneous expansion. This uses the techniques of [9] and [12].

This concludes our discussion of the proof.

5. Further directions.

There are many areas where these investigations should be continued. The most
obvious is to understand what happens in the more general case when D is an
effective divisor with normal crossings. Given the delicacy of the arguments required
even in the smooth case, this may be difficult since the requisite linear theory is not
yet at an advanced enough state. It would also be interesting to understand the
limit of these metrics as a —)- 1. Most likely, the limit should be one of the complete
metrics obtained by Tian and Yau [14], and this fact might shed further light on the
precise asymptotics of these metrics. Finally, recalling that one of the first major
applications of the existence of KE metrics in the smooth case was to obtaining
the so-called Miyaoke-Yau inequalities amongst the Chern classes of .Y, we would
expect that our theorem should yield some ineresting inequalities of the same type
involving the pair (X.D).
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