@incollection{JEDP_1995____A8_0,
author = {Johan Rade},
title = {Singular {Yang-Mills} connections},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {8},
pages = {1--15},
year = {1995},
publisher = {\'Ecole polytechnique},
doi = {10.5802/jedp.480},
mrnumber = {96k:58049},
zbl = {0896.58017},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.480/}
}
Johan Rade. Singular Yang-Mills connections. Journées équations aux dérivées partielles (1995), article no. 8, 15 p.. doi: 10.5802/jedp.480
[DK] and , The geometry of four-manifolds, Oxford University Pr., Oxford, 1990. | MR | Zbl
[K] , Embedded surfaces in 4-manifolds, in : Proceedings of the International Congress of Mathematicians (Kyoto 1990), Springer, Tokyo, Berlin, 1991, pp. 529-539. | MR | Zbl
[KM1] and , Gauge theory for embedded surfaces I, II, Topology 32 (1993), 773-826 ; 34 (1995), 37-97. | Zbl
[KM2] and , Recurrence relations and asymptotics for four-manifolds invariants, Bull. Amer. Math. Soc. 30 (1994), 215-221. | MR | Zbl
[KN] and , Foundations of Differential Geoemtry, vol. 1, Interscience, New York, 1963. | Zbl
[L] , , The theory of gauge fields in four dimensions, Amer. Math. Soc., Providence, Rhode Island, 1985. | Zbl
[R1] , Singular Yang-Mills fields. Local theory I, J. reine angew. Math. 452 (1994), 111-151. | MR | Zbl
[R2] , Singular Yang-Mills fields. Local theory II., J. reine angew. Math. 456 (1994), 197-219. | MR | Zbl
[R3] , Singular Yang-Mills fields. Global theory, International J. Math. 4 (1994), 491-521. | MR | Zbl
[SS] and , Classification of singular Sobolev connections by their holonomy, Commun. Math. Phys. 144 (1992), 337-350. | MR | Zbl
[T] , The Seiberg-Witten invariants, videotaped lectures, Amer. Math. Soc., Providence, Rhode Island, 1995. | MR | Zbl
[U1] , Connections with Lp bounds on curvature, Comm. Math. Phys. 83 (1982), 31-42. | MR | Zbl
[U2] , Removable singularities in Yang-Mills fields, Commun. Math. Phys. 83 (1982), 11-30. | MR | Zbl
[U3] , The Chern classes of Sobolev connections, Commun. Math. Phys. 101 (1985), 449-457. | MR | Zbl
Cité par Sources :

