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Singular Yang-Mills Connections

Lecture given at the Partial Differential Equations Meeting

in Saint Jean de Monts, May 29 - June 2, 1995

by Johan Rude at Lund

First I wish to thank the organizers for inviting me to speak at this conference. I
will speak about an intriguing partial differential equation that arises in gauge theory.
Gauge theory is mainly concerned with the Yang-Mills equation and related equations,
such as the Ginzburg-Landau equation (with a magnetic field), the Yang-Mills-Higgs
equation and the Seiberg-Witten equation. I will talk about solutions to the Yang-Mills
equation with singularities. In a moment I will write down the Yang-Mills equation, in
full detail. First I just want to mention the origin of these singular solutions.

The Yang-Mills equation has mainly been studied by topologists and geometers,
in particular in connection with the topology of smooth 4-manifolds. In the early 80's
Donaldson showed that Yang-Mills equation could be used as a powerful tool in smooth
4-manifold topology. In particular he defined new invariants for smooth 4-manifolds.
These invariants reflect the topology of solution spaces for Yang-Mills equation on the
4-manifold. They are now known as Donaldson polynomials. These developments were
a bit of a shock for the 4-manifold topologists. They were suddenly forced to learn
about partial differential equations. Many of them did so very succesfully. For a brief
introduction to the applications of gauge theory to 4-manifold topology see [L] and for a
comprehensive text see [DK]. Both books are masterpieces of mathematical exposition.

The Donaldson polynomials were at first extremely hard to calculate. However, a
few years ago Kronheimer and Mrowka discovered a method for calculating them in a
large number of cases. The key was to introduce a new type of Donaldson polynomials
defined using spaces of singular Yang-Mills connections, [K], [KM1], [KM2], see also
[R3]. The purpose of my own work has been to understand these singular Yang-Mills
connections from the point of view of partial differential equations.

In October last fall a new equation and new invariants were introduced by Seiberg
and Witten. Within a few weeks several famous conjectures about 4-manifolds had
been settled. Priority often was a matter of days. An interesting account of these
developments is given in [T]. It is not clear if 4-manifold topologists are interested in
singular Yang-Mills connections any more.
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§1. The Yang-Mills equation

Recall that if
(7= ^ (T^^dx,, A - . . A c ^

il<"'<ip

is a differential ^-form, and

^= ^ î...jA-i A . - . A c b ^
ji<-'-<j'4

then the exterior derivative of a is defined to be the (p + l)-form

___ r\

(Ll) d(j == ̂  ^ ^ ^dx, A ch^ A • . . A cb^.
j <i<-<tp J

and the wedge product of a and a; is defined to be the (p + g)-form

(1.2) a A a; = ^ a^l...ipuJjl...j,dxi, A • • • A rî  A rî  A . • • A rf^.
<i<"'<^
j'i<---<jg

These operations satisfy the identities

u A a = (-1)^0- A ̂

^(7= 0

d(a A a;) = ria A u: + (-1)^ A dc^.

The adjoint of the exterior derivative (with respect to the Euclidean metric ̂ dx]) is
given by

P Q

^"S S (-l)i/^——^l..^^•l A- "A^^_ ,A^ ,^ , A - . . A & , .
^=lzi<...<^ C7a/^

Now, let G be a compact Lie group. Let fl be the Lie algebra of G. I usually think
of G as a group of matrices; that simplifies the notation a good deal. In particular,
then the Lie bracket [X,Y] is simply given by XY - YX. In fact, I will soon restrict
my attention to the case G = SU(2). This will simplify the notation even further.

In gauge theory one considers differential forms a- the coefficient a^.., take values
in the Lie algebra g. These are called g- valued forms. We can still define the exterior
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derivative of a by by (1.1). However, the right hand side of (1.2) is quite meaningless
it ^'i...tp and ^ji...^ are g-valued forms. Instead we define the bracket of a and uj as

[a^] = ^ [(7il...ip^jl^.j,}dxil A •" Acb^ Acb^ A • • • A c b ^ .
z i < - - - < ^ p
Jl<-'-<J'g

Then
[^a]^-!)^-1^]

^(7= 0

rf[a^] = [da^}+ (-1)^,^].

Gauge transformations. The Lie group G acts on the Lie algebra g by conjugation;
for g G G and X (E 0 we can form gXg~1 e g . If a is a g-valued p-form and g is a
G-valued function, then we can form a new g-valued p-form

g.cr = ^ g^i^.^g^dx^ A • • • A ^ ^ .
? i < - - - < ^ p

We say that a and (/.a are gauge-equivalent. This establishes an equivalence relation
on Q- valued p- forms.

We can now define gauge theory; it is the study of objects that are invariant under
gauge transformations. One example is the commutator of 0-valued forms; it is clear
that

g\a^}= [g.a.g.uj].

Covariant derivatives. The exterior derivative is not gauge-invariant; we have

_ _ r\
g.da = ̂  ^ 9{^^il...ip)9~ldxj A dx^ A • • • A dx^

J ii<"'<ip x3

but _ _ f\
d(g.a) = ̂  ^ g^-(g^i,...ipg~l)dxj A dx^ A • • • A dx^.

j ii<"-<ip x3

In general these differ by terms that involve the derivatives of g . A calculation shows
that

g.da = d{g.a)+ [A.g.a]

where
A=-{dg)g-l=-^j^g-ldx,.
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This suggest that we define the covariant exterior derivative of a as

( r\ ^

dA = da + ̂  ̂  = E E ^-^—•p + [A^ ̂ i-j) ̂  A ̂ -i A - A rî .
J zi<-<.p OWJ )

The covariant derivative depends on the choice of a Q- valued 1-form A. We call A a G-
connection. A short calculation using the Jacobi identity shows that for any connection
A

dA[cr,r] = [dAcr} + (-1)^^].

Another short calculation shows that exterior covariant derivative is gauge-invariant in
the sense that

g.dACr = dg^g.cr)

where

g.A = gAg-1 - {dg)g-1 = ̂  ̂ A.ff-1 - ^g-A dx,.
^ \ oxi /

Note that a connection transforms differently than an ordinary g-valued 1-form. As
before, we say that A and g.A are gauge-equivalent. This establishes an equivalence
relation on the set of G- connections.

( ^\ ^
dA=d(T+[A,(r}=^ ^ Q—^i...tp+[Aj,^....j)o?a;,Ad^A...Ada;.,.

j »i <-<.,, ox^ )

The adjoint of d^ is given by

P f f) \
d*Aa=Y^ ^ (-l)l/(a——(r«•l-«p+[A«•^<7»l...tp])ria;.•l A- - -Ar ia-^_,Ac?a; ,^ , A - . - A r i a - , .

^=l»i<-<»p yaxiv )

Curvature. We do not have d\a = 0. Instead a short calculation shows that

d^=[FA^}

where FA is the 5-valued 2-form

FA = dA + ^[A, A] = J ̂  (^-L - 9A- + [A,, A,]) dx, A ̂ ,.
i j v i 3 ^

The 2-form FA is called the curvature of the connection A. Another short calculation
shows that curvature is gauge-invariant, i.e.

ff.^A = Fg.A.
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Yet another short computation shows that

dAFA = 0.

This is known as the Bianchi identity.

Yang-Mills equation. Let A be a connection in a domain 0 in R^. One defines the
energy of the connection A as

WA) = \ ̂  ̂  = |E /^ - ̂  + [A., A,] 2 &.

A short calculation shows that the Euler-Lagrange equation for this energy functional
is

d\FA = 0.

This equation is known as the Yang-Mills equation. A connection A that satisfies
Yang-Mills equation is called a Yang-Mills connection. If we write out the Yang-Mills
equation fully we get

^ I Q^A, Q^A, \9A, , 1 \9A, ,} _ \9A, 1 - - -,\
g [-^ - 9^ + K^\ + K-^-j - 2 [^^\ + ̂ A^) = °

for i = 1,..., n. The most convenient way to write the equation is

cTdA + {A ® VA} + {A ® A (g) A) = 0.

Here we write {A ® VA} for terms that are linear in A{ and QAi/Qxj et.c.

The Yang-Mills energy is gauge invariant, i.e.

2)97T(^.A) = 2)97l(A).

Hence the Yang-Mills equation is gauge-invariant. In particular, if A is a Yang-Mills
connection, then g.A is also a Yang-Mills connection.

To define the Yang-Mills energy and the Yang-Mills equation on a manifold, we
need to choose a Riemannian metric. It is easy to verify that in four dimensions the
Yang-Mills energy, and hence the Yang-Mills equation, are conformally invariant.
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§2. A regularity theorem for Yang-Mills connections

The pricipal term in Yang-Mills eqaution is d^dA. The operator ri*ri is not elliptic.
Thus we can not expect solutions to be smooth. This is also clear from the gauge
invariance. Given a smooth solution we can manufacture a non-smooth solution by
applying a suitable non-smooth gauge transformation. Conversely, the best wecould
hope for is that any solution to Yang-Mills equation is gauge-equivalent to a smooth
solution. Such a result was proven by K. Uhlenbeck.

Before discussing her theorem, I want to review a classical geometric result. A
connection A is said be trivial if it gauge-equivalent to 0. A connection A is said to be
flat if FA = 0. Clearly any trivial connection is flat.

Lemma 2.1. If A is a connection defined in a simply connected domain Sl and
A is flat, then A is trivial.

Proof. A connection A is trivial if we can solve the equation g.A = 0 for g . Fully
written out, this equation takes the form

(2.1) ^-=^-OXi

This implies
Q^g 9g . 9A , 9A

9x^9x] = ̂ Ai +99^= gAjAi + ̂

The identity
9^g ^ 9^

QxiQxj 9xj9xi

gives rise to the integrability condition

. , 9A, , , 9A
A3Ai + 9x] = AiA' + Jx.1 - AIA- + fe

which is equivalent to
F A = O .

This condition is clearly necessary for the existence of a solution g . By Frobenius
theorem it is also sufficient, as long as 0 is simply connected. D

We will not actually use this Lemma. It only serves as a motivation for Uhlenbeck's
good gauge theorem. In fact, Uhlenbeck's theorem can be viewed as an analyst^ version
of Lemma 2.1; it says that if A is a connection, on the unit ball, with small curvature,
then there exists a gauge transformation g such that g.A is small.
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For simplicity we now restrict out attention to 4-dimensions. Let B^ denote the
unit ball in R4. Let v denote the outward unit normal of QB\. Let LP^^B^) denote the
Sobolev space of functions with k derivatives in Lp. We say that a form or a connection
is in LPJk(B^ if all its components are in LP^^B^). It is natural to consider connection
A e I/^^i). It follows from the Sobolev embedding L2-1 — L4 that if A G £251 then
FA C L2 and 2)97T(A) < oo.

Theorem 2.2. [Ul] TAere exists e > 0 such that if A is a connection in L2^^^)
with

\\FA\\L-(B,) ^ e
then there exists a gauge transformation g in L2'2^^) such that

( v - (^.A) = ̂  Xi(g.A)i =0 on 9B^

(2.6) ? .
d-(g.A) = ̂  ̂ -(^A). -0 °̂ i

and

||^.A||L2>i(Bi) ^ C\\FA\\L^(B^

The conditions (2.6) are called gauge conditions.

The theorem is proven as follows. Assume that A salsifies the gauge conditions.
Let A + b be a small perturbation of A. We want to show that A + b can be transformed
to a connection that satisfies the gauge conditions. This amounts to solving the non-
linear boundary value problem

f r f * ( ^ . ( A + 6 ) ) = 0 on Bi

^-(^.(A+fr)) = 0 on (9-Bi.

for g . If we let g = exp y and linearize around y == 0 and 6 = 0 then we get the linear
boundary value problem

(2.4) 1^+Eh^]--^ °̂ .

[ ^ - ^ d ^ = - z / — ' 6 on 9B^.

This system can clearly be solved if A is small enough; then it is a small perturbation
of the Neumann problem for the Laplace operator. It then follows from the implicit
function theorem that the non-linear boundary value problem can be solved if b is small
enough. The theorem can then be proven by the continuity method. See [Ul] for more
details.
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Theorem 2.3. [Ul] There exist constants Ck such that if A in addition to the
assumptions in Theorem 2.2 satisfies Yang-Mills equations, then g.A is smooth on the
interior of B\ and

\\9'A\\c^(B,/2) < Ck\\FA\\L^(B,)-

This is seen as follows. Assume that A is Yang-Mills and (TA = 0. We now have
that AA == dd^A + d^dA. Hence it follows that

(2.5) AA + {A ® VA} + {A ® A ® A} = 0.

This is a semi-linear elliptic equation. If A C -L2'1, then we can estimate higher deriva-
tives of A by bootstrapping. In the first iteration step we have to use to usual trick of
estimating the difference quotient of A.

This siuation is common in gauge theory. In order to prove regularity for an
equation, one has to supplement it with gauge conditions. Thus, when facing a new
equation, the first question is, what is the right gauge condition.

§3. Singular connections

According to a theorem by K. Uhlenbeck, point singularities of finite energy con-
nections are removable. The precise statement is as follows:

Theorem 3.1. [U2], [U3] If A is a connection in L^{Bz \ {0}) and FA €
^(-Bi \ {0}) == ^(Bi), then there exists a gauge transformation g C L^^^B^) such
that g.A € A2^^).

This theorem was originally proven under the extra assumption that A be Yang-
Mills, [U2]. Later it was discovered that finite energy sufficed, [U3].

According to a theorem of mine, singularities along embedded curves are remov-
able. It suffices to consider the connections on B\ \ L\ where L\ == { (a;i, 0,0,0) [ \x-^\ ^
1}.

Theorem 3.2. [R2] If A is a connection in L^{B^ \ L^) and FA G L2^ \
L\) = ^(-Bi), then there exists a gauge transformation g € L^(B\ \ L\) such that
^Ae^W).

The next case is connections on a 4-manifold with singularities along an embedded
surface. The local model are then connections on B\ with singularities along D\ =
{ (^i? ^2 ? 0,0) | x\ + x\ = 1 }. It is not true that finite energy connections on B\ \ D\
can be extended to connections on B\. Unlike B\ \ {0} and B\ \ L\, the domain B\ \ D\
is not simply connected. Hence Lemma 2.1 does not apply to B\ \D\. Thus, before
we attempt to generalize the theorems of §2 and §3 to B\ \ D\ we need to generalize
Lemma 2.1 to non-simply-connected domains 0. This requires the notion ofholonomy.
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Holonomy and flat connections. Let A be a connection in a region Q in R4. Let
XQ 6 ^. Let 7 : [0,1] -^ 0 be a closed smooth curve in 0 with 7(0) = 7(1) = a;o- The
initial value problem

( 9h , v-^ ch,
— + / i > A.-^^O.

(2.3) ^ ^ dt
h{0) = 1

has a unique solution. The element h{l) € C? is called the holonomy of A around 7.
This initial value problem is gauge-invariant in the sense that

-i(g.h){t) = g(x(t))h(t)g(x(t))

is a solution for g.A. Thus the conjugacy class of the holonomy is gauge-invariant.

If the connection is trivial, then (2.1) has a solution g with g(xo) = 1. Then
the solution to (2.3) is given by h(t) = ^(7^)). It follows that that the holonomy is
h{l) = ^(7(1)) ^ Q^o) = ^(7(0)) = ^(0) = L Thus we get another condition for a
connection to be trivial; the holonomy around each loop has to be the identity.

One can show that if A is flat, then the holonomy of A is invariant under smooth
deformations of 7. Thus the holonomy only depends the homotopy class of 7. Hence it
gives a map 71-1(0, a-o) —' G. Here 71-1(0,^0) denotes the fundamental group of 0 with
base point XQ. It is easily seen that that this map is a homomorphism. If we apply a
gauge transformation g to A or if we change the base point, then this homomorphism
gets conjugated by an element of G.

Theorem 3.3. There is a 1-1 correspondence between gauge equivalence classes
of fiat G-connections on Q and conjugacy classes of homomorphisms 7Ti(0) —^ G.

The proof is not hard; see for instance [KN] Prop. 9.3.

In our special case of B\ \I?i, the fundamental group is generated by any loop that
goes around D^ once. It follows that flat connections are classified by the holonomy
around this loop.

Corollary 3.4. There is a 1-1 correspondence between gauge equivalence classes
of flat G-connections on B\ \ D\ and conjugacy classes in G.

Limit Holonomy. As we have seen, flat connections on Bi \ D\ are classified by
their holonomy. A non-flat connection does not a uniquely defined holonomy. However,
any connection on B\ \ D\ with curvature in L2 has a well-defined limit holonomy.

We introduce cylindrical coordinates ( x - ^ ^ x ^ ^ r ^ O ) on I?i, with x^ = rcosO and
3*4 == rs'm0. In these coordinates D\ is given by r = 0.
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Theorem 3.5. [SS] If A is a G-connection in £^(5i\2?i) with FA € i/^i^i),
then the holonomy of A around the loop 7(1) = (^i,a;2^cos(27rf), rsin(27rl)) exists for
almost all x ^ y x^ and r. The limit of this holonomy as r —> 0 exists for almost all x^
and x^. This limit is independent ofx\ and x^ for almost all x\ and x^.

This unique limit is called the limit holonomy of the connection.

We can now state the correct analog of Theorem 3.1 and Theorem 3.2 for J9i \ J9i.
Note that if G is connected, then exp : 0 —^ G is surjective. (Proof: On a complete
Riemannian manifold any two points can be connected by a geodesic curve. On a
Lie group with an invariant metric, in particular any compact Lie group, the geodesic
curves through the identity are precisely the 1-parameter subgroups.)

Theorem 3.6. [R2] If A is a G-connection in L^(B^ \ D\) with limit holonomy
exp(—27TJf), then there exists a gauge transformation g € L^{B^ \ D\) such that

g.A= Xd0+a

where a,Vxd0a € Lxde(Bi)'

Here

( Q \

VA^ = ̂  ^ Tr- î..^ + [Aj,^i...zJ ) dxj ® dxi, A • • • A dxi^.
C/3/1 /

3 il<-<zp 3 /

Note that the connection X d0 + a has curvature dxdQ0' + ^[a^ <^]- Hence the condition
a G L^de ensures ^hat the curvature lies in -L2.

As a consequence of Thm. 3.6, a singularity along a surface of a finite energy
connection is removable is and only if the limit holonomy is trivial.

The Yang-Mills connections used by Kronheimer and Mrowka are Yang-Mills con-
nections on a 4-manifold with singularities along an embedded surface. Near any point
of the surface they are of the form X d9 + a with a e £^^(J3i).
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§4. A regularity theorem for singular Yang-Mills connections

To keep the notation simple, we will now restrict our attention to the Lie group
SU(2). This is the group of all unitary 2 x 2 matrices with determinant one. These are
precisely the matrices

f '- w}\-w z )

where z and w are complex numbers with [^p+lw] 2 :^ .

The corresponding Lie algebra 5u(2) consists of the skew-hermitian 2 x 2 matrices
with trace zero. These are precisely the matrices

f " ^V-^ - i t )
with t real and z complex.

Each conjugacy class in SU(2) contains exactly one element of the form

/exp(-27ria) 0 \
\ 0 exp(27^^Q/)y

with 0 < a < 1/2. It then follows from Theorem 3.6 that the natural class of connec-
tions on B\ \ D\ are connections of the form

( ia 0 \ _
n • ] de + a

\ 0 -za )

with 0 < a < 1/2. Here I will only discuss the case 0 < a < 1/2. In the case of
a = 0, the singularity is removable, and we are back to the case discussed in §2. In
the case a = 1/2, the singularity is removable as far as the local analysis is concerned;
however there can be topological obstructions to removing the singularity globally on
a 4-manifold, see [KM1].

If a- is an su(2)-valued p-form, then we can decompose a- as

I(TD (JT
—OT. —ZO-Da- =

where o-o is a real valued p-form and a^ is a complex valued p-form. We have

zVo-D ^2zad6^T
7(—)^=W+[(^-OJ^^ : = _——— ._v(toQ-L)^=w+[(^-OJ^a]:=

v o - t a / - \-V2^^T -zVa,

Thus V/,^ o \ ac^ on °D as V ^d on ^r as ^2iade' L^ d^iade denote the covariant
[ o -zc.)^

exterior derivative given by the connection 2a d0. Let d^^^ denote the adjoint of
d2iad9'

We then have the following analog of Theorem 2.2.
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_ ̂ T^4<1> [R1] For any a witA 2a ^ z there exists e > °S U C A th^ ^A- \^ -^) d0 + a is a connection with a e £2/1 , (5i) and
Co'-9.)^

II^AllL^BiYDi) < e,

then there exists a gauge transformation g G L2^ . {B^ such that
[^ - i a ) d 0

A ( ia 0 ^
9'A=[ . . ^ + a'\ 0 —za)

where
' d^a^ = 0 on B^

^w^"2^)^ onBz \^i
z/ -. a' = 0 on <95i

and

lla IlL2-1

f ia 0 '1
V 0 -ia )

(B,) <CIIJFA||L2(Bl).
d0

We also have the following analog of Theorem 2.3.

Theorem 4.2. [Rl] If in additional to the assumptions of Theorem 4.1 the
connection is Yang-Mills, then

f Kl + |V^| ̂  C\\FA\\L-(B,) on 5i/2
1 \\7knl \ < rr2mm{2a^~2a}-k\\^ II a( j v a y i s c r ! II^AllL^Bi) on 5i/2 .

These seemingly strange theorems demand an explanation. The key is to under-
stand the function space L2^ ^ . (5i) in more detail. It follows from (1.1) that

V 0 -.cj^ v /

,«'.^).{°Dez:•;^
V o -zcc)^ (IT € L^^^Ui^eW

r2,lHere a^ C L^^ means that a^V2^^ C ^^-Bi). Fully written out

r / /)liv2^d^Tiii2(^) = y ( —J: + 9(7^

9xo + QOrr

9r +r~ 9(7.

QQ +2ia<7T\ rdx^dx^drdO

Now,

y f2 d0 ^ (min{2a, 1 - 2a})-1 / {df/dO + 2za/)2^.
751 J s ^
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It follows that
lk~ aT\\L2(Bl) < C\\^72icxd60'T\\L•2(B^)'

On the other hand, it is clear that

|V2^^T||L2(Bi) < c{\\^^T\\L2(B^) + \\r ^T Hl^Bi) )•

Hence
2 1 f a^C^ '^^i)

ae£( toa-^)^ l ) ' 'tva„-^C^2?)

So now you think Pm going to talk about analysis on weighted Sobolev spaces with
singular weights. Pm not.

As I mentioned before, the finite energy condition and the Yang-Mills equation are
conformally invariant in 4 dimensions. Thus we can replace the standard metric

^ dx] = dx\ + dx\ + dr2 + r2de2

i

with any conformal metric. A natural choice is the metric

r-2 ̂  dx] = r-\dx\ + dx2, + dr2) + d02.
i

With this metric D\ is moved out to infinity. We recognize r~2(dx^ + dx\ + dr2) as the
upper half space model of hyperbolic 3-space. Thus R4 with the metric r~2 ̂  dx] is
isometric with H3 x S1, the cartesian product of hyperbolic 3-space and the unit circle.
The unit ball with this metric is isometric with H^. X 51, the cartesian product of one
half of hyperbolic 3-space and the unit circle. Thus we can view a^ as a differntial
form on H^. x S1. A short calculation shows that r"1^^^ C L211 if and only if
(TT C L2^^ x S1). Thus

2 1 i a D el/^i)

^(U^^U^.W^)
Thus we should view a^ as a differential form on B\ and a^ as a differential form on
H^. x S1. Let d^ ^^Q denote the adjoint of d^ade with respect to the metric r~1 ̂  dx].
Moreover, a short calculation shows that

^iade^ = ̂ d^^r-^a^.

In other words, the gauge condition says that a^ is coclosed on B\ and a^ is coclosed
onH^ x S\
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Theorem 4.1 is now proven along the same lines as Thm. 2.1. Instead of the
equation (2.4) we get the equations

f\
Aye + ̂ ("r),—1 = -d*bo on Bi

^h,2iad6<t>T + Re ̂ {{a^ i{d^ o) i + (aD)t(^ad(^r),)
i

= -<2<wA on H^ x S\

on 9B^

on 9H^ x S1

v ~'d(fD = ^-"&D

^h -"d^iadeVT = ^h -^7

where Ah,2^^ = ^iaded^^de + d^^^d^de is the covariant Hodge Laplacian for
1-forms on H^. x S1 given by the connection 2ia d0, and v\, = TV is the outward unit
normal of H^. X 51. Thus we get a small perturbation of the Neumann problem for A
on 5i and the Neumann problem for ^,2iade on H^_ x S1. The theory for the former
is well known. The letter is analyzed in [Rl] by elementary methods.

Theorem 4.2 is now proven along the same lines as Thm. 2.3. Instead of the
equation (2.5) we get the system

Aa^ + {(IT ® ^2iad6ar} + {o'D ® CLr ® ^r} =0 OH B^

Ah,2zo-d^T + {dD ® Vh^o-d^r} + {o^ ® Vh^o}

+{a/r 0 0 ^ ® 0^} + {(ID 0 ^D ® 0'r} = 0 on H^. x S1 .

The 1-form a can now be estimated by a bootstrapping procedure. On the first equa-
tion we apply standard elliptic estimates for the usual Laplacian A on 2?i. On the
second equation we apply decay estimates at infinity for the covariant Hodge Laplacian
^h,2iad6 on H^_ x S1. These decay estimates are derived in [Rl] by elementary methods.
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