@incollection{JEDP_1990____A15_0,
author = {Christoph M\"arz},
title = {Spectral asymptotics for {Hill's} equation near the potential maximum},
booktitle = {},
series = {Journ\'ees \'equations aux d\'eriv\'ees partielles},
eid = {15},
pages = {1--10},
year = {1990},
publisher = {\'Ecole polytechnique},
doi = {10.5802/jedp.397},
zbl = {0707.34049},
language = {en},
url = {https://proceedings.centre-mersenne.org/articles/10.5802/jedp.397/}
}
TY - JOUR AU - Christoph März TI - Spectral asymptotics for Hill's equation near the potential maximum JO - Journées équations aux dérivées partielles PY - 1990 SP - 1 EP - 10 PB - École polytechnique UR - https://proceedings.centre-mersenne.org/articles/10.5802/jedp.397/ DO - 10.5802/jedp.397 LA - en ID - JEDP_1990____A15_0 ER -
%0 Journal Article %A Christoph März %T Spectral asymptotics for Hill's equation near the potential maximum %J Journées équations aux dérivées partielles %D 1990 %P 1-10 %I École polytechnique %U https://proceedings.centre-mersenne.org/articles/10.5802/jedp.397/ %R 10.5802/jedp.397 %G en %F JEDP_1990____A15_0
Christoph März. Spectral asymptotics for Hill's equation near the potential maximum. Journées équations aux dérivées partielles (1990), article no. 15, 10 p.. doi: 10.5802/jedp.397
[Gé,Gr] , : Precise Estimates of Tunneling and Eigenvalues near a Potential Barrier ; J. of Diff. Eq. 72, 149-177 (1988). | MR | Zbl
[Ha] : The Band Structure of a One-dimensional Periodic System in a Scaling Limit; Ann. Physics 119, 351-369 (1979) | MR | Zbl
[He,Sj 1] , : Multiple Wells in the Semiclassical Limit I, Comm. PDE, 9(4), 337-408 (1984) | MR | Zbl
[He,Sj 2] , : Semiclassical Analysis of Harper's Equation III ; Bull. de la S.M.F., Mémoire, to appear (1990) | Numdam
[Hor] : Semiclassical Approximation for Tunneling near the Top of a Potential Barrier and its Applications to Solid State Physics ; Thesis, Univ. of California, Los Angeles (1989)
[Ly,Ke] , : Uniform Asymptotic Solutions of Second Order Linear Ordinary Differential Equations with Turning Points ; Comm. Pure Appl. Math. 23, 379-408 (1970) | MR | Zbl
[Mz] : Spectral Asymptotics for Hill's Equation near the Potential Maximum ; Thesis, Université de Paris Sud, (April 1990)
[Ou] : Comportement Semi-classique pour l'Opérateur de Schrödinger à Potentiel Périodique ; J. of Funct. Anal. 72, 65-93 (1987) | MR | Zbl
[Re,Si] , : Methods of Modern Mathematical Physics IV ; Academic Press (1978) | MR | Zbl
[Si] : Semiclassical Analysis of Low Lying Eigenvalues III : Width of the Ground State Band in Strongly Coupled Solids ; Ann. Physics 158, 415-420 (1984) | MR | Zbl
[Sj 1] : Singularités analytiques microlocales ; Astérisque N° 95 (1982) | MR | Zbl
[Sj 2] : Density of States Oscillations for Magnetic Schrödinger Operators ; Preprint (1990)
[Sk] : Geometric and Arithmethic Methods in the Spectral Theory of Multidimensional Periodic Operators ; Proc. of the Steklov Inst. of Math. 171 (1987 (2)) | MR | Zbl
[We,Ke] , : Asymptotic Behavior of Stability Regions for Hill's Equation ; SIAM J. Appl. Math. 47(5), 941-958 (1987) | MR | Zbl
Cité par Sources :

